Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 6"

(Solution 2)
(Solution 2)
Line 24: Line 24:
 
&= \sum_{n=1}^{9800}(\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}})\cdot(\frac{n-\sqrt{n^2-1}}{n-\sqrt{n^2-1}}) \
 
&= \sum_{n=1}^{9800}(\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}})\cdot(\frac{n-\sqrt{n^2-1}}{n-\sqrt{n^2-1}}) \
 
&= \sum_{n=1}^{9800}(\sqrt{n+\sqrt{n^2-1}})\cdot(\sqrt{n+\sqrt{n^2-1}})^2 \
 
&= \sum_{n=1}^{9800}(\sqrt{n+\sqrt{n^2-1}})\cdot(\sqrt{n+\sqrt{n^2-1}})^2 \
&= \sum_{n=1}^{9800}\sqrt{n-sqrt{n^2-1}}
+
&= \sum_{n=1}^{9800}\sqrt{n-\sqrt{n^2-1}}
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  

Revision as of 11:59, 28 November 2019

Problem

Let $S$ denote the value of the sum

\[\sum_{n = 1}^{9800} \frac{1}{\sqrt{n + \sqrt{n^2 - 1}}}\]

$S$ can be expressed as $p + q \sqrt{r}$, where $p, q,$ and $r$ are positive integers and $r$ is not divisible by the square of any prime. Determine $p + q + r$.

Solution

Notice that $\sqrt{n + \sqrt{n^2 - 1}} = \frac{1}{\sqrt{2}}\sqrt{2n + 2\sqrt{(n+1)(n-1)}} = \frac{1}{\sqrt{2}}\left(\sqrt{n+1}+\sqrt{n-1}\right)$. Thus, we have

\[\sum_{n = 1}^{9800} \frac{1}{\sqrt{n + \sqrt{n^2 - 1}}}\] \[= \sqrt{2}\sum_{n = 1}^{9800} \frac{1}{\sqrt{n+1}+\sqrt{n-1}}\] \[= \frac{1}{\sqrt{2}}\sum_{n = 1}^{9800} \left(\sqrt{n+1}-\sqrt{n-1}\right)\]

This is a telescoping series; note that when we expand the summation, all of the intermediary terms cancel, leaving us with $\frac{1}{\sqrt{2}}\left(\sqrt{9801}+\sqrt{9800}-\sqrt{1}-\sqrt{0}\right) = 70 + 49\sqrt{2}$, and $p+q+r=\boxed{121}$.

Solution 2

Simplifying the expression yields \begin{align*} S &= \sum_{n=1}^{9800}\frac{1}{\sqrt{n+\sqrt{n^2-1}}} \\ &= \sum_{n=1}^{9800}\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}} \\ &= \sum_{n=1}^{9800}(\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}})\cdot(\frac{n-\sqrt{n^2-1}}{n-\sqrt{n^2-1}}) \\ &= \sum_{n=1}^{9800}(\sqrt{n+\sqrt{n^2-1}})\cdot(\sqrt{n+\sqrt{n^2-1}})^2 \\ &= \sum_{n=1}^{9800}\sqrt{n-\sqrt{n^2-1}} \end{align*}

See Also

Mock AIME 3 Pre 2005 (Problems, Source)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15