Difference between revisions of "2016 IMO Problems/Problem 2"
m (Fixed list) |
m (Took out unnecessary semicolon) |
||
Line 2: | Line 2: | ||
{| border="0" cellpadding="5" | {| border="0" cellpadding="5" | ||
| valign="top"| | | valign="top"| | ||
− | * in each row and each column, one third of the entries are <math>I</math>, one third are <math>M</math> and one third are <math>O</math>; and | + | * in each row and each column, one third of the entries are <math>I</math>, one third are <math>M</math> and one third are <math>O</math>; and |
* in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are <math>I</math>, one third are <math>M</math> and one third are <math>O</math>. | * in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are <math>I</math>, one third are <math>M</math> and one third are <math>O</math>. | ||
|} | |} | ||
'''Note.''' The rows and columns of an <math>n \times n</math> table are each labelled <math>1</math> to <math>n</math> in a natural order. Thus each cell corresponds to a pair of positive integer <math>(i,j)</math> with <math>1 \le i,j \le n</math>. For <math>n>1</math>, the table has <math>4n-2</math> diagonals of two types. A diagonal of first type consists all cells <math>(i,j)</math> for which <math>i+j</math> is a constant, and the diagonal of this second type consists all cells <math>(i,j)</math> for which <math>i-j</math> is constant. | '''Note.''' The rows and columns of an <math>n \times n</math> table are each labelled <math>1</math> to <math>n</math> in a natural order. Thus each cell corresponds to a pair of positive integer <math>(i,j)</math> with <math>1 \le i,j \le n</math>. For <math>n>1</math>, the table has <math>4n-2</math> diagonals of two types. A diagonal of first type consists all cells <math>(i,j)</math> for which <math>i+j</math> is a constant, and the diagonal of this second type consists all cells <math>(i,j)</math> for which <math>i-j</math> is constant. |
Revision as of 19:08, 26 December 2019
Find all integers for which each cell of table can be filled with one of the letters and in such a way that:
|
Note. The rows and columns of an table are each labelled to in a natural order. Thus each cell corresponds to a pair of positive integer with . For , the table has diagonals of two types. A diagonal of first type consists all cells for which is a constant, and the diagonal of this second type consists all cells for which is constant.