|
|
Line 5: |
Line 5: |
| | | |
| ==The Proof== | | ==The Proof== |
− | Denote the area of the quadrilateral by ''S''. Then we have
| |
− | :<math> \begin{align} S &= \text{area of } \triangle ADB + \text{area of } \triangle BDC \
| |
− | &= \tfrac{1}{2}pq\sin A + \tfrac{1}{2}rs\sin C
| |
− | \end{align} </math>
| |
− |
| |
− | Therefore
| |
− | :<math> 4S^2 = (pq)^2\sin^2 A + (rs)^2\sin^2 C + 2pqrs\sin A\sin C. \, </math>
| |
− |
| |
− | The [[law of cosines]] implies that
| |
− | :<math> p^2 + q^2 -2pq\cos A = r^2 + s^2 -2rs\cos C, \, </math>
| |
− | because both sides equal the square of the length of the diagonal ''BD''. This can be rewritten as
| |
− | :<math>\tfrac14 (r^2 + s^2 - p^2 - q^2)^2 = (pq)^2\cos^2 A +(rs)^2\cos^2 C -2 pqrs\cos A\cos C. \,</math>
| |
− |
| |
− | Substituting this in the above formula for <math>4S^2</math> yields
| |
− | :<math>4S^2 + \tfrac14 (r^2 + s^2 - p^2 - q^2)^2 = (pq)^2 + (rs)^2 - 2pqrs\cos (A+C). \, </math>
| |
− |
| |
− | This can be written as
| |
− | :<math>16S^2 = (r+s+p-q)(r+s+q-p)(r+p+q-s)(s+p+q-r) - 16pqrs \cos^2 \frac{A+C}2. </math>
| |
− |
| |
− | Introducing the semiperimeter
| |
− | :<math>T = \frac{p+q+r+s}{2},</math>
| |
− | the above becomes
| |
− | :<math>16S^2 = 16(T-p)(T-q)(T-r)(T-s) - 16pqrs \cos^2 \frac{A+C}2</math>
| |
− | and Bretschneider's formula follows.
| |
− |
| |
− | NOTE TO ALL: this proof was taken from Wikipedia on December the 1st, 2006.
| |
| | | |
| ==See Also== | | ==See Also== |
| * [[Brahmagupta's formula]] | | * [[Brahmagupta's formula]] |
| * [[Geometry]] | | * [[Geometry]] |
Revision as of 09:03, 2 December 2006