Difference between revisions of "1976 AHSME Problems/Problem 27"

(Solution)
Line 1: Line 1:
== Problem 27 ==
 
 
If <math>N=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}</math>, then <math>N</math> equals
 
 
<math>\textbf{(A) }1\qquad
 
\textbf{(B) }2\sqrt{2}-1\qquad
 
\textbf{(C) }\frac{\sqrt{5}}{2}\qquad
 
\textbf{(D) }\sqrt{\frac{5}{2}}\qquad
 
\textbf{(E) }\text{none of these}  </math>
 
 
 
==Solution==
 
==Solution==
  
Line 17: Line 7:
 
<math>\frac{\sqrt{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})^2}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{(\sqrt{5}+2)+(\sqrt{5}-2)+2(
 
<math>\frac{\sqrt{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})^2}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{(\sqrt{5}+2)+(\sqrt{5}-2)+2(
 
\sqrt{(\sqrt{5}+2)(\sqrt{5}-2)}}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{2\sqrt5+2\sqrt{(\sqrt5)^2-2^2}}}{\sqrt{\sqrt{5}+1}} =  
 
\sqrt{(\sqrt{5}+2)(\sqrt{5}-2)}}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{2\sqrt5+2\sqrt{(\sqrt5)^2-2^2}}}{\sqrt{\sqrt{5}+1}} =  
\frac{\sqrt{2\sqrt5+2\sqrt{1}}}{\sqrt{\sqrt5+1}}</math>
+
\frac{\sqrt{2\sqrt5+2\sqrt{1}}}{\sqrt{\sqrt5+1}} =
 +
\frac{\sqrt{2\sqrt5+2}}{\sqrt{\sqrt5+1}} = \frac{(\sqrt{2})(\sqrt{\sqrt5+1})}{\sqrt{\sqrt5+1}} = \sqrt2</math>.
 +
 
 +
Now for the right side.
 +
 
 +
<math>\sqrt{3-2\sqrt2} = \sqrt{(1-\sqrt2)^2} = 1-\sqrt2</math>
 +
 
 +
Putting it all together gives:
 +
 
 +
<math>(\sqrt2)+(1-\sqrt2)=\boxed{(A) 1}.</math>

Revision as of 17:48, 20 March 2020

Solution

We will split this problem into two parts: The fraction on the left and the square root on the right.

Starting with the fraction on the left, begin by squaring the numerator and putting a square root around it. It becomes

$\frac{\sqrt{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})^2}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{(\sqrt{5}+2)+(\sqrt{5}-2)+2( \sqrt{(\sqrt{5}+2)(\sqrt{5}-2)}}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{2\sqrt5+2\sqrt{(\sqrt5)^2-2^2}}}{\sqrt{\sqrt{5}+1}} =  \frac{\sqrt{2\sqrt5+2\sqrt{1}}}{\sqrt{\sqrt5+1}} = \frac{\sqrt{2\sqrt5+2}}{\sqrt{\sqrt5+1}} = \frac{(\sqrt{2})(\sqrt{\sqrt5+1})}{\sqrt{\sqrt5+1}} = \sqrt2$.

Now for the right side.

$\sqrt{3-2\sqrt2} = \sqrt{(1-\sqrt2)^2} = 1-\sqrt2$

Putting it all together gives:

$(\sqrt2)+(1-\sqrt2)=\boxed{(A) 1}.$