Difference between revisions of "2000 AMC 8 Problems/Problem 14"

m (Solution 2)
(Solution 3)
Line 24: Line 24:
  
 
==Solution 3==
 
==Solution 3==
We find a pattern: both of our numbers have units digit <math>9.</math>
+
Experimentation gives
 +
<cmath>\text{any number ending with }9^{\text{something even}} = \text{has units digit }1</cmath>
  
Experimentation gives that powers of <math>9</math> alternate between units digits <math>9</math> (for odd powers) and <math>1</math> (for even powers).
+
<cmath>\text{any number ending with }9^{\text{something odd}} = \text{has units digit }9</cmath>
  
Since both of our powers (<math>19</math> and <math>99</math>) are odd, we are left with <math>9+9=18,</math> which has units digit <math>\boxed{(\textbf{D}) \ 8}.</math>
+
Using this we have
 +
\begin{align*}
 +
19^{19} + 99^{99} \
 +
9^{19} + 9^{99} \\
 +
\end{align*}
  
 +
Both <math>19</math> and <math>99</math> are odd, so we are left with
 +
<cmath>9+9=18,</cmath> which has units digit <math>\boxed{(\textbf{D}) \ 8}.</math>
 
-ryjs
 
-ryjs
  

Revision as of 23:22, 11 April 2020

Problem

What is the units digit of $19^{19} + 99^{99}$?

$\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 8 \qquad \text{(E)}\ 9$

Solution

Finding a pattern for each half of the sum, even powers of $19$ have a units digit of $1$, and odd powers of $19$ have a units digit of $9$. So, $19^{19}$ has a units digit of $9$.

Powers of $99$ have the exact same property, so $99^{99}$ also has a units digit of $9$. $9+9=18$ which has a units digit of $8$, so the answer is $\boxed{D}$.

Solution 2

Using modular arithmetic: \[99 \equiv 9 \equiv -1 \pmod{10}\]

Similarly, \[19 \equiv 9 \equiv -1 \pmod{10}\]

We have \[(-1)^{19} + (-1)^{99} = -1 + -1 \equiv \boxed{(\textbf{D}) \ 8} \pmod{10}\]

-ryjs

Solution 3

Experimentation gives \[\text{any number ending with }9^{\text{something even}} = \text{has units digit }1\]

\[\text{any number ending with }9^{\text{something odd}} = \text{has units digit }9\]

Using this we have 1919+9999919+999

Both $19$ and $99$ are odd, so we are left with \[9+9=18,\] which has units digit $\boxed{(\textbf{D}) \ 8}.$ -ryjs

See Also

2000 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png