Difference between revisions of "2010 AMC 10B Problems/Problem 5"

(Solution 2)
(Redirected page to 2010 AMC 12B Problems/Problem 4)
(Tag: New redirect)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
== Problem==
+
#redirect [[2010 AMC 12B Problems/Problem 4]]
A month with <math>31</math> days has the same number of Mondays and Wednesdays. How many of the seven days of the week could be the first day of this month?
 
 
 
<math>\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6</math>
 
 
 
==Solution==
 
In this month there are four weeks and three remaining days. Any 7 days must have exactly one Monday and one Wednesday, so it works if the last <math>31 - 4\cdot 7 = 3</math> days have the same number of Mondays and Wednesdays. We have three choices: Monday, Tuesday, Wednesday; Thursday, Friday, Saturday; Friday, Saturday, Sunday. The number of days the month can start on are Monday, Thursday, and Friday, for a final answer of <math>\boxed{\textbf{(B)}\ 3}.</math>
 
 
 
==Solution 2==
 
 
 
Let's make a calendar to visualize the situation better.
 
 
 
<cmath>
 
\begin{table}[]
 
\begin{tabular}{lllllll}
 
\hline
 
\multicolumn{1}{|l|}{1}  & \multicolumn{1}{l|}{2}  & \multicolumn{1}{l|}{3}  & \multicolumn{1}{l|}{4}  & \multicolumn{1}{l|}{5}  & \multicolumn{1}{l|}{6}  & \multicolumn{1}{l|}{7}  \ \hline
 
\multicolumn{1}{|l|}{8}  & \multicolumn{1}{l|}{9}  & \multicolumn{1}{l|}{10} & \multicolumn{1}{l|}{11} & \multicolumn{1}{l|}{12} & \multicolumn{1}{l|}{13} & \multicolumn{1}{l|}{14} \ \hline
 
\multicolumn{1}{|l|}{15} & \multicolumn{1}{l|}{16} & \multicolumn{1}{l|}{17} & \multicolumn{1}{l|}{18} & \multicolumn{1}{l|}{19} & \multicolumn{1}{l|}{20} & \multicolumn{1}{l|}{21} \ \hline
 
\multicolumn{1}{|l|}{22} & \multicolumn{1}{l|}{23} & \multicolumn{1}{l|}{24} & \multicolumn{1}{l|}{25} & \multicolumn{1}{l|}{26} & \multicolumn{1}{l|}{27} & \multicolumn{1}{l|}{28} \ \hline
 
29                      & 30                      & 31                      &                        &                        &                        &                       
 
\end{tabular}
 
\end{table}
 
 
 
</cmath>
 
 
 
==See Also==
 
{{AMC10 box|year=2010|ab=B|num-b=4|num-a=6}}
 
{{MAA Notice}}
 

Latest revision as of 19:34, 26 May 2020