Difference between revisions of "2010 AMC 10B Problems/Problem 9"

(Created page with 'Simplify the expression <math> a-(b-(c-(d+e))) </math>. I recommend to start with the innermost parenthesis and work your way out. So you get: <math>a-(b-(c-(d+e))) = a-(b-(c-d-…')
 
(Redirected page to 2010 AMC 12B Problems/Problem 5)
(Tag: New redirect)
 
(11 intermediate revisions by 8 users not shown)
Line 1: Line 1:
Simplify the expression <math> a-(b-(c-(d+e))) </math>. I recommend to start with the innermost parenthesis and work your way out.
+
#redirect [[2010 AMC 12B Problems/Problem 5]]
 
 
So you get:
 
<math>a-(b-(c-(d+e))) = a-(b-(c-d-e)) = a-(b-c+d+e)) = a-b+c-d-e</math>
 
 
 
Henry substituted <math>a, b, c, d</math> with <math>1, 2, 3, 4</math> respectively.
 
 
 
We have to find the value of <math>e</math>, such that <math> a-b+c-d-e = a-b-c-d+e</math> (the same expression without parenthesis).
 
 
 
Substituting and simplifying we get:
 
<math>-2-e = -8+e \Leftrightarrow -2e = -6 \Leftrightarrow e=3</math>
 
 
 
So Henry must have used the value <math>3</math> for <math>e</math>.
 
 
 
Our answer is:
 
 
 
<math> \boxed{\mathrm{(D)}= 3} </math>
 

Latest revision as of 19:38, 26 May 2020