Difference between revisions of "1984 AIME Problems/Problem 15"
I_like_pie (talk | contribs) |
|||
Line 1: | Line 1: | ||
− | |||
== Problem == | == Problem == | ||
+ | Determine <math>\displaystyle w^2+x^2+y^2+z^2</math> if | ||
+ | |||
+ | <center><math> \frac{x^2}{2^2-1}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1 </math></center> | ||
+ | <center><math> \frac{x^2}{4^2-1}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1 </math></center> | ||
+ | <center><math> \frac{x^2}{6^2-1}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1 </math></center> | ||
+ | <center><math> \frac{x^2}{8^2-1}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1 </math></center> | ||
+ | |||
== Solution == | == Solution == | ||
{{solution}} | {{solution}} |
Revision as of 00:53, 21 January 2007
Problem
Determine if
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.