Difference between revisions of "1998 JBMO Problems/Problem 2"

(Solution)
Line 4: Line 4:
  
  
== Solution ==
+
== Solutions ==
 +
 
 +
=== Solution 1 ===
  
 
Let <math>BC = a, ED = 1 - a</math>
 
Let <math>BC = a, ED = 1 - a</math>
Line 39: Line 41:
  
 
By <math>Kris17</math>
 
By <math>Kris17</math>
 +
 +
 +
=== Solution 2 ===
 +
 +
Let <math>BC = x, DE = y</math>. Denote the area of <math>\triangle XYZ</math> by <math>[XYZ]</math>.
 +
 +
<math>[ABC]+[AED]=\frac{1}{2}(x+y)=\frac{1}{2}</math>
 +
 +
<math>[ACD]</math> can be found by [[Heron's formula]].
 +
 +
<math>AC=\sqrt{x^2+1}</math>
 +
 +
<math>AD=\sqrt{y^2+1}</math>
 +
 +
Let <math>AC=b, AD=c</math>.
 +
 +
\begin{align*}
 +
[ACD]&=\frac{1}{4}\sqrt{(1+b+c)(-1+b+c)(1-b+c)(1+b-c)}\
 +
&=\frac{1}{4}\sqrt{((b+c)^2-1)(1-(b-c)^2)}\
 +
&=\frac{1}{4}\sqrt{(b+c)^2+(b-c)^2-(b^2-c^2)^2-1}\
 +
&=\frac{1}{4}\sqrt{2(b^2+c^2)-(b^2-c^2)^2-1}\
 +
&=\frac{1}{4}\sqrt{2(x^2+y^2+2)-(x^2-y^2)^2-1}\
 +
&=\frac{1}{4}\sqrt{2((x+y)^2-2xy+2)-(x+y)^2(x-y)^2-1}\
 +
&=\frac{1}{4}\sqrt{5-4xy-(x-y)^2}\
 +
&=\frac{1}{4}\sqrt{5-(x+y)^2}\
 +
&=\frac{1}{2}
 +
\end{align*}
 +
 +
Total area <math>=[ABC]+[AED]+[ACD]=\frac{1}{2}+\frac{1}{2}=1</math>

Revision as of 21:59, 4 June 2020

Problem 2

Let $ABCDE$ be a convex pentagon such that $AB=AE=CD=1$, $\angle ABC=\angle DEA=90^\circ$ and $BC+DE=1$. Compute the area of the pentagon.


Solutions

Solution 1

Let $BC = a, ED = 1 - a$

Let angle $DAC$ = $X$

Applying cosine rule to triangle $DAC$ we get:

$Cos X = (AC ^ {2} + AD ^ {2} - DC ^ {2}) / (2 * AC * AD )$

Substituting $AC^{2} = 1^{2} + a^{2}, AD ^ {2} = 1^{2} + (1-a)^{2}, DC = 1$ we get:

$Cos^{2} X = (1 - a - a ^ {2}) ^ {2} / ((1 + a^{2})(2 - 2a + a^{2}))$

From above, $Sin^{2} X = 1 - Cos^{2} X  =  1 / ((1 + a^{2})(2 - 2a + a^{2})) = 1/(AC^{2}.AD^{2})$

Thus, $Sin X * AC * AD = 1$

So, $Area$ of triangle $DAC$ = $(1/2)*Sin X * AC * AD = 1/2$

Let $AF$ be the altitude of triangle DAC from A.

So $1/2*DC*AF = 1/2$

This implies $AF = 1$.

Since $AFCB$ is a cyclic quadrilateral with $AB = AF$, traingle $ABC$ is congruent to $AFC$. Similarly $AEDF$ is a cyclic quadrilateral and traingle $AED$ is congruent to $AFD$.

So $area$ of triangle $ABC$ + $area$ of triangle $AED$ = $area$ of Triangle $ADC$. Thus $area$ of pentagon $ABCD$ = $area$ of $ABC$ + $area$ of $AED$ + $area$ of $DAC$ = $1/2 + 1/2 = 1$


By $Kris17$


Solution 2

Let $BC = x, DE = y$. Denote the area of $\triangle XYZ$ by $[XYZ]$.

$[ABC]+[AED]=\frac{1}{2}(x+y)=\frac{1}{2}$

$[ACD]$ can be found by Heron's formula.

$AC=\sqrt{x^2+1}$

$AD=\sqrt{y^2+1}$

Let $AC=b, AD=c$.

[ACD]=14(1+b+c)(1+b+c)(1b+c)(1+bc)=14((b+c)21)(1(bc)2)=14(b+c)2+(bc)2(b2c2)21=142(b2+c2)(b2c2)21=142(x2+y2+2)(x2y2)21=142((x+y)22xy+2)(x+y)2(xy)21=1454xy(xy)2=145(x+y)2=12

Total area $=[ABC]+[AED]+[ACD]=\frac{1}{2}+\frac{1}{2}=1$