Difference between revisions of "1998 JBMO Problems/Problem 2"
Durianaops (talk | contribs) (→Solution) |
|||
Line 4: | Line 4: | ||
− | == Solution == | + | == Solutions == |
+ | |||
+ | === Solution 1 === | ||
Let <math>BC = a, ED = 1 - a</math> | Let <math>BC = a, ED = 1 - a</math> | ||
Line 39: | Line 41: | ||
By <math>Kris17</math> | By <math>Kris17</math> | ||
+ | |||
+ | |||
+ | === Solution 2 === | ||
+ | |||
+ | Let <math>BC = x, DE = y</math>. Denote the area of <math>\triangle XYZ</math> by <math>[XYZ]</math>. | ||
+ | |||
+ | <math>[ABC]+[AED]=\frac{1}{2}(x+y)=\frac{1}{2}</math> | ||
+ | |||
+ | <math>[ACD]</math> can be found by [[Heron's formula]]. | ||
+ | |||
+ | <math>AC=\sqrt{x^2+1}</math> | ||
+ | |||
+ | <math>AD=\sqrt{y^2+1}</math> | ||
+ | |||
+ | Let <math>AC=b, AD=c</math>. | ||
+ | |||
+ | \begin{align*} | ||
+ | [ACD]&=\frac{1}{4}\sqrt{(1+b+c)(-1+b+c)(1-b+c)(1+b-c)}\\ | ||
+ | &=\frac{1}{4}\sqrt{((b+c)^2-1)(1-(b-c)^2)}\\ | ||
+ | &=\frac{1}{4}\sqrt{(b+c)^2+(b-c)^2-(b^2-c^2)^2-1}\\ | ||
+ | &=\frac{1}{4}\sqrt{2(b^2+c^2)-(b^2-c^2)^2-1}\\ | ||
+ | &=\frac{1}{4}\sqrt{2(x^2+y^2+2)-(x^2-y^2)^2-1}\\ | ||
+ | &=\frac{1}{4}\sqrt{2((x+y)^2-2xy+2)-(x+y)^2(x-y)^2-1}\\ | ||
+ | &=\frac{1}{4}\sqrt{5-4xy-(x-y)^2}\\ | ||
+ | &=\frac{1}{4}\sqrt{5-(x+y)^2}\\ | ||
+ | &=\frac{1}{2} | ||
+ | \end{align*} | ||
+ | |||
+ | Total area <math>=[ABC]+[AED]+[ACD]=\frac{1}{2}+\frac{1}{2}=1</math> |
Revision as of 21:59, 4 June 2020
Problem 2
Let be a convex pentagon such that , and . Compute the area of the pentagon.
Solutions
Solution 1
Let
Let angle =
Applying cosine rule to triangle we get:
Substituting we get:
From above,
Thus,
So, of triangle =
Let be the altitude of triangle DAC from A.
So
This implies .
Since is a cyclic quadrilateral with , traingle is congruent to . Similarly is a cyclic quadrilateral and traingle is congruent to .
So of triangle + of triangle = of Triangle . Thus of pentagon = of + of + of =
By
Solution 2
Let . Denote the area of by .
can be found by Heron's formula.
Let .
\begin{align*} [ACD]&=\frac{1}{4}\sqrt{(1+b+c)(-1+b+c)(1-b+c)(1+b-c)}\\ &=\frac{1}{4}\sqrt{((b+c)^2-1)(1-(b-c)^2)}\\ &=\frac{1}{4}\sqrt{(b+c)^2+(b-c)^2-(b^2-c^2)^2-1}\\ &=\frac{1}{4}\sqrt{2(b^2+c^2)-(b^2-c^2)^2-1}\\ &=\frac{1}{4}\sqrt{2(x^2+y^2+2)-(x^2-y^2)^2-1}\\ &=\frac{1}{4}\sqrt{2((x+y)^2-2xy+2)-(x+y)^2(x-y)^2-1}\\ &=\frac{1}{4}\sqrt{5-4xy-(x-y)^2}\\ &=\frac{1}{4}\sqrt{5-(x+y)^2}\\ &=\frac{1}{2} \end{align*}
Total area