Difference between revisions of "1998 JBMO Problems/Problem 2"
Durianaops (talk | contribs) (→Solutions) |
Durianaops (talk | contribs) (→See Also) |
||
Line 75: | Line 75: | ||
==See Also== | ==See Also== | ||
− | {{JBMO box|year=1998|num-b=1|num-a=3}} | + | {{JBMO box|year=1998|num-b=1|num-a=3|five=}} |
Revision as of 22:36, 4 June 2020
Contents
[hide]Problem 2
Let be a convex pentagon such that , and . Compute the area of the pentagon.
Solutions
Solution 1
Let
Let
Applying cosine rule to we get:
Substituting we get:
From above,
Thus,
So, area of =
Let be the altitude of from .
So
This implies .
Since is a cyclic quadrilateral with , is congruent to . Similarly is a cyclic quadrilateral and is congruent to .
So area of + area of = area of . Thus area of pentagon = area of + area of + area of =
By
Solution 2
Let . Denote the area of by .
can be found by Heron's formula.
Let .
Total area .
By durianice
See Also
1998 JBMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 | ||
All JBMO Problems and Solutions |