|
|
(25 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | ==Instructions==
| |
| | | |
− | 1. All rules of a regular AMC 10 apply.
| |
− |
| |
− | 2. Please submit your answers in a DM to me (Lcz).
| |
− |
| |
− | 3. Don't cheat.
| |
− |
| |
− | Here's the problems!
| |
− |
| |
− | ==Sample Problems lol==
| |
− |
| |
− |
| |
− | Given that <math>729=1011011001_2</math>, <math>2021^2</math> can be expressed as <math>2^{a_1}+2^{a_2}+2^{a_3} . . . +2^{a_k}</math>, where the <math>a_i</math> are an increasing sequence of positive integers. Find <math>k</math>.
| |
− |
| |
− | <math>\textbf{(A)}\ 10 \qquad\textbf{(B)}\ 11 \qquad\textbf{(C)}\ 12 \qquad\textbf{(D)}\ 13 \qquad\textbf{(E)}\ 14</math>
| |
− |
| |
− |
| |
− | NOTE THAT THESE PROBLEMS ARE DEFINETELY NOT ORDERED BY DIFFICULTY YET LMAO
| |
− |
| |
− | ==Problem 1==
| |
− |
| |
− | Find the value of <math>2^{0+2+1}+2+0(2+(1))+20(21)</math>.
| |
− |
| |
− | <math>\textbf{(A)}\ 8 \qquad\textbf{(B)}\ 426 \qquad\textbf{(C)}\ 428 \qquad\textbf{(D)}\ 430 \qquad\textbf{(E)}\ 432</math>
| |
− |
| |
− | ==Problem 2==
| |
− |
| |
− | If <math>|x|=2</math>, and <math>|y-3|=1</math>, find the sum of all possible values of <math>|xy|</math>.
| |
− |
| |
− | <math>\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 16</math>
| |
− |
| |
− | ==Problem 3==
| |
− |
| |
− | What is <math>1*2+2*3+3*4+4*5+5*6+6*7+7*8</math>?
| |
− |
| |
− | <math>\textbf{(A)}\ 84 \qquad\textbf{(B)}\ 120 \qquad\textbf{(C)}\ 138 \qquad\textbf{(D)}\ 150 \qquad\textbf{(E)}\ 168</math>
| |
− |
| |
− | ==Problem 4==
| |
− |
| |
− | Find the sum of all ordered pairs of positive integer <math>x</math> and <math>y</math> such that
| |
− |
| |
− | (1) <math>|x-y| \geq 0</math>
| |
− |
| |
− | (2) <math>x,y \leq 3</math>
| |
− |
| |
− | (3) <math>xy \leq 8</math>
| |
− |
| |
− | <math>\textbf{(A)}\ 24 \qquad\textbf{(B)}\ 27 \qquad\textbf{(C)}\ 30 \qquad\textbf{(D)}\ 36 \qquad\textbf{(E)}\ 39</math>
| |
− |
| |
− | ==Problem 5==
| |
− |
| |
− | Find <math>x</math> if <math>x^3-3x^2+3x-1=x^3-2x^2+15x+35</math>.
| |
− |
| |
− | <math>\textbf{(A)}\ -6 \qquad\textbf{(B)}\ -4 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 6</math>
| |
− |
| |
− | ==Problem 6==
| |
− |
| |
− | Given that <math>5101</math> is prime, find the number of factors of <math>104060401+20402+1</math>.
| |
− |
| |
− | <math>\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 6 \qquad\textbf{(E)}\ 8</math>
| |
− |
| |
− | ==Problem 7==
| |
− |
| |
− | Find <math>\sum_{i,j,k=1}^{7} ijk \pmod{5}</math> (Where <math>\sum_{i,j,k=1}^{7} ijk</math> is the sum of all products <math>ijk</math> when <math>1 \geq i,j,k \geq 7</math>.
| |
− |
| |
− | <math>\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4</math>
| |
− |
| |
− | ==Problem 8==
| |
− |
| |
− | Given that <math>258741=27*7*37*37</math>, evaluate <math>(\overline{.143})(\overline{.258741})</math>
| |
− |
| |
− | <math>\textbf{(A)}\ \frac{1}{999} \qquad\textbf{(B)}\ \frac{1}{99} \qquad\textbf{(C)}\ \frac{1}{27} \qquad\textbf{(D)}\ \frac{1}{9} \qquad\textbf{(E)}\ \frac{1}{3}</math>
| |
− |
| |
− | ==Problem 9==
| |
− |
| |
− | ==Problem 10==
| |
− |
| |
− | Jack and Jill play a (bad) game on a number line which contains the integers. Jack starts at <math>-1</math>, and Jill starts at <math>18</math>. Every turn, the judge flip a standard six sided die. If the number rolled is a square number, Jack moves to the right <math>10</math> units. Otherwise, Jill moves to the left <math>5</math> units. Find the probability for which Jack and Jill pass each other for the first time in <math>3</math> moves.
| |
− |
| |
− | <math>\textbf{(A)}\ 4/27 \qquad\textbf{(B)}\ 2/9 \qquad\textbf{(C)}\ 1/3 \qquad\textbf{(D)}\ 4/9 \qquad\textbf{(E)}\ 2/3</math>
| |
− |
| |
− | ==Problem 11==
| |
− |
| |
− | ==Problem 12==
| |
− |
| |
− | ==Problem 13==
| |
− |
| |
− | ==Problem 14==
| |
− |
| |
− | ==Problem 15==
| |
− |
| |
− | ==Problem 16==
| |
− |
| |
− | ==Problem 17==
| |
− |
| |
− | ==Problem 18==
| |
− |
| |
− | ==Problem 19==
| |
− |
| |
− | ==Problem 20==
| |
− |
| |
− | ==Problem 21==
| |
− |
| |
− | ==Problem 22==
| |
− |
| |
− | ==Problem 23==
| |
− |
| |
− | ==Problem 24==
| |
− |
| |
− | ==Problem 25==
| |