Difference between revisions of "2004 AMC 10A Problems/Problem 24"

m (NOT COMPLETE!!! (will finish later))
 
(Solution)
Line 20: Line 20:
  
 
<math>a_{2^8}=8\cdot a_8=2^3\cdot</math>
 
<math>a_{2^8}=8\cdot a_8=2^3\cdot</math>
 +
 +
//The following is written by Dale Black -- Not Validated
 +
I think it should be <math>2^{4950}</math>
 +
 +
<math>a_{2^{100}}=2^{99}\cdot2^{98}\cdot...\cdot2^1\cdot1=2^{(1+99)\cdot99/2}=2^{99\cdot50}=2^{4950}</math>

Revision as of 11:18, 5 February 2007

Problem

Let $a_1,a_2,\cdots$, be a sequence with the following properties.

    (i)  $a_1=1$, and
    (ii)  $a_{2n}=n\cdot a_n$ for any positive integer $n$.

What is the value of $a_{2^{100}}$?

$\mathrm{(A) \ } 1 \qquad \mathrm{(B) \ } 2^{99} \qquad \mathrm{(C) \ } 2^{100} \qquad \mathrm{(D) \ } 2^{4050} \qquad \mathrm{(E) \ } 2^{9999}$

Solution

Note that

$a_2=2a_1$

$a_{2^2}=2\cdot a_2=2\cdot1=2$

$a_{2^3}=4\cdot a_4=2^3\cdot2^{2+1}$

$a_{2^8}=8\cdot a_8=2^3\cdot$

//The following is written by Dale Black -- Not Validated I think it should be $2^{4950}$

$a_{2^{100}}=2^{99}\cdot2^{98}\cdot...\cdot2^1\cdot1=2^{(1+99)\cdot99/2}=2^{99\cdot50}=2^{4950}$