Difference between revisions of "2004 AMC 10A Problems/Problem 20"
Jiakangchen (talk | contribs) m (→Problem) |
Mathandski (talk | contribs) (→Solution 4(system of equations): changed to Asymptote) |
||
Line 6: | Line 6: | ||
<math> \mathrm{(A) \ } \frac{4}{3} \qquad \mathrm{(B) \ } \frac{3}{2} \qquad \mathrm{(C) \ } \sqrt{3} \qquad \mathrm{(D) \ } 2 \qquad \mathrm{(E) \ } 1+\sqrt{3} </math> | <math> \mathrm{(A) \ } \frac{4}{3} \qquad \mathrm{(B) \ } \frac{3}{2} \qquad \mathrm{(C) \ } \sqrt{3} \qquad \mathrm{(D) \ } 2 \qquad \mathrm{(E) \ } 1+\sqrt{3} </math> | ||
− | ==Solution | + | ==Solution 4(system of equations)== |
− | Assume AB=1 then FC is x ED is 1-x then we see that using HL FCB is congruent is EAB. Using Pythagoras of triangles FCB and FDE we get 2(1-x)^2=x^2+1. Expanding we get 2x^2-4x+2=x^2+1. Simplifying gives x^2-4x+1=0 solving using completing the square(or other methods) gives 2 answers 2-sqrt | + | Assume AB=1 then FC is x ED is <math>1-x</math> then we see that using HL FCB is congruent is EAB. Using Pythagoras of triangles FCB and FDE we get <math>2{(1-x)}^2=x^2+1</math>. Expanding we get <math>2x^2-4x+2=x^2+1</math>. Simplifying gives <math>x^2-4x+1=0</math> solving using completing the square(or other methods) gives 2 answers <math>2-\sqrt{3}</math> and <math>2+\sqrt{3}</math> because <math>x < 1</math> then <math>x=2-\sqrt{3}</math> then using the areas we get the answer to be D |
==Solution 2== | ==Solution 2== |
Revision as of 19:37, 1 August 2020
Contents
[hide]Problem
Points and
are located on square
so that
is equilateral. What is the ratio of the area of
to that of
?

Solution 4(system of equations)
Assume AB=1 then FC is x ED is then we see that using HL FCB is congruent is EAB. Using Pythagoras of triangles FCB and FDE we get
. Expanding we get
. Simplifying gives
solving using completing the square(or other methods) gives 2 answers
and
because
then
then using the areas we get the answer to be D
Solution 2
Since triangle is equilateral,
, and
and
are
congruent. Thus, triangle
is an isosceles right triangle. So we let
. Thus
. If we go angle chasing, we find out that
, thus
.
. Thus
, or
. Thus
, and
, and
. Thus the ratio of the areas is
Solution 3 (Non-trig)
WLOG, let the side length of be 1. Let
. It suffices that
. Then triangles
and
are congruent by HL, so
and
. We find that
, and so, by the Pythagorean Theorem, we have
This yields
, so
. Thus, the desired ratio of areas is
Solution 4
is equilateral, so
, and
so they must each be
. Then let
, which gives
and
.
The area of
is then
.
is an isosceles right triangle with hypotenuse 1, so
and therefore its area is
.
The ratio of areas is then
Solution 5
First, since is equilateral and
is a square, by the Hypothenuse Leg Theorem,
is congruent to
. Then, assume length
and length
, then
.
is equilateral, so
and
, it is given that
is a square and
and
are right triangles. Then we use the Pythagorean theorem to prove that
and since we know that
and
, which means
. Now we plug in the variables and the equation becomes
, expand and simplify and you get
. We want the ratio of area of
to
. Expressed in our variables, the ratio of the area is
and we know
, so the ratio must be 2. Choice D