Difference between revisions of "Euler's Totient Theorem"
(→Credit) |
m (→Proof) |
||
Line 10: | Line 10: | ||
==Proof== | ==Proof== | ||
− | Consider the set of numbers <math>A = | + | Consider the set of numbers <math>A = \{ n_1, n_2, ... n_{\phi(m)} \} \pmod{m}</math> such that the elements of the [[set]] are the numbers relatively [[prime]] to <math>m</math>. |
− | It will now be proved that this set is the same as the set <math>B = | + | It will now be proved that this set is the same as the set <math>B = \{ an_1, an_2, ... an_{\phi(m)} \} \pmod{m}</math> where <math> (a, m) = 1</math>. All elements of <math>B</math> are relatively prime to <math>m</math> so if all elements of <math>B</math> are distinct, then <math>B</math> has the same elements as <math>A.</math> In other words, each element of <math>B</math> is congruent to one of <math>A</math>.This means that <math> n_1 n_2 ... n_{\phi(m)} \equiv an_1 \cdot an_2 ... an_{\phi(m)}</math><math>\pmod{m}</math> → <math>a^{\phi (m)} \cdot (n_1 n_2 ... n_{\phi(m)}) \equiv n_1 n_2 ... n_{\phi(m)}</math><math>\pmod{m}</math> → <math>a^{\phi (m)} \equiv 1</math><math>\pmod{m}</math> as desired. Note that dividing by <math> n_1 n_2 ... n_{\phi(m)}</math> is allowed since it is relatively prime to <math>m</math>. |
== See also == | == See also == |
Revision as of 13:41, 11 August 2020
Euler's Totient Theorem is a theorem closely related to his totient function.
Contents
[hide]Theorem
Let be Euler's totient function. If is a positive integer, is the number of integers in the range which are relatively prime to . If is an integer and is a positive integer relatively prime to ,Then .
Credit
This theorem is credited to Leonhard Euler. It is a generalization of Fermat's Little Theorem, which specifies it when is prime. For this reason it is also known as Euler's generalization or the Fermat-Euler theorem.
Proof
Consider the set of numbers such that the elements of the set are the numbers relatively prime to . It will now be proved that this set is the same as the set where . All elements of are relatively prime to so if all elements of are distinct, then has the same elements as In other words, each element of is congruent to one of .This means that → → as desired. Note that dividing by is allowed since it is relatively prime to .