Difference between revisions of "Mock AIME 5 2005-2006 Problems"

Line 1: Line 1:
http://www.artofproblemsolving.com/Forum/latexrender/pictures/f6b77a1dbd12cdcdf1bc44d82c6302a1.gif
+
== Problem 1 ==
 +
Suppose <math>n</math> is a positive integer. Let <math>f(n)</math> be the sum of the distinct positive prime divisors of <math>n</math> less than <math>50</math> (e.g. <math>f(12) = 2+3 = 5</math> and <math>f(101) = 0</math>). Evaluate the remainder when <math>f(1)+f(2)+\cdots+f(99)</math> is divided by <math>1000</math>.
  
<math>1</math>. Suppose <math>n</math> is a positive integer. Let <math>f(n)</math> be the sum of the distinct positive prime divisors of <math>n</math> less than <math>50</math> (e.g. <math>f(12) = 2+3 = 5</math> and <math>f(101) = 0</math>). Evaluate the remainder when <math>f(1)+f(2)+\cdots+f(99)</math> is divided by <math>1000</math>.
+
[[Mock AIME 5 2005-2006/Problem 1|Solution]]
  
\vskip .6in
+
== Problem 2 ==
 +
A circle <math>\omega_1</math> of radius <math>6\sqrt{2}</math> is internally tangent to a larger circle <math>\omega_2</math> of radius <math>12\sqrt{2}</math> such that the center of <math>\omega_2</math> lies on <math>\omega_1</math>. A diameter <math>AB</math> of <math>\omega_2</math> is drawn tangent to <math>\omega_1</math>. A second line <math>l</math> is drawn from <math>B</math> tangent to <math>\omega_1</math>. Let the line tangent to <math>\omega_2</math> at <math>A</math> intersect <math>l</math> at <math>C</math>. Find the area of <math>\triangle ABC</math>.
  
<math>2</math>. A circle <math>\omega_1</math> of radius <math>6\sqrt{2}</math> is internally tangent to a larger circle <math>\omega_2</math> of radius <math>12\sqrt{2}</math> such that the center of <math>\omega_2</math> lies on <math>\omega_1</math>. A diameter <math>AB</math> of <math>\omega_2</math> is drawn tangent to <math>\omega_1</math>. A second line <math>l</math> is drawn from <math>B</math> tangent to <math>\omega_1</math>. Let the line tangent to <math>\omega_2</math> at <math>A</math> intersect <math>l</math> at <math>C</math>. Find the area of <math>\triangle ABC</math>.
+
[[Mock AIME 5 2005-2006/Problem 2|Solution]]
  
\vskip .6in
+
== Problem 3 ==
 +
A <math>\emph hailstone</math> number <math>n = d_1d_2 \cdots d_k</math>, where <math>d_i</math> denotes the <math>i</math>th digit in the base-<math>10</math> representation of <math>n</math> for <math>i = 1,2, \ldots,k</math>, is a positive integer with distinct nonzero digits such that <math>d_m < d_{m-1}</math> if <math>m</math> is even and <math>d_m > d_{m-1}</math> if <math>m</math> is odd for <math>m = 1,2,\ldots,k</math> (and <math>d_0 = 0</math>). Let <math>a</math> be the number of four-digit hailstone numbers and <math>b</math> be the number of three-digit hailstone numbers. Find <math>a+b</math>.
  
<math>3</math>. A {\em hailstone} number <math>n = d_1d_2 \cdots d_k</math>, where <math>d_i</math> denotes the <math>i</math>th digit in the base-<math>10</math> representation of <math>n</math> for <math>i = 1,2, \ldots,k</math>, is a positive integer with distinct nonzero digits such that <math>d_m < d_{m-1}</math> if <math>m</math> is even and <math>d_m > d_{m-1}</math> if <math>m</math> is odd for <math>m = 1,2,\ldots,k</math> (and <math>d_0 = 0</math>). Let <math>a</math> be the number of four-digit {\em hailstone} numbers and <math>b</math> be the number of three-digit {\em hailstone} numbers. Find <math>a+b</math>.
+
[[Mock AIME 5 2005-2006/Problem 3|Solution]]
  
\vskip .6in
+
== Problem 4 ==
 +
Let <math>m</math> and <math>n</math> be integers such that <math>1 < m \le 10</math> and <math>m < n \le 100</math>. Given that <math>x = \log_m{n}</math> and <math>y = \log_n{m}</math>, find the number of ordered pairs <math>(m,n)</math> such that <math> \displaystyle \lfloor x \rfloor = \lceil y \rceil</math>. (<math>\lfloor a \rfloor</math> is the greatest integer less than or equal to <math>a</math> and <math>\lceil a \rceil</math> is the least integer greater than or equal to <math>a</math>).
  
<math>4</math>. Let <math>m</math> and <math>n</math> be integers such that <math>1 < m \le 10</math> and <math>m < n \le 100</math>. Given that <math>x = \log_m{n}</math> and <math>y = \log_n{m}</math>, find the number of ordered pairs <math>(m,n)</math> such that <math> \displaystyle \lfloor x \rfloor = \lceil y \rceil</math>. (<math>\lfloor a \rfloor</math> is the greatest integer less than or equal to <math>a</math> and <math>\lceil a \rceil</math> is the least integer greater than or equal to <math>a</math>).
+
[[Mock AIME 5 2005-2006/Problem 4|Solution]]
  
\vskip .6in
+
== Problem 5 ==
 +
Find the largest prime divisor of <math>25^2+72^2</math>.
  
<math>5</math>. Find the largest prime divisor of <math>25^2+72^2</math>.
+
[[Mock AIME 5 2005-2006/Problem 5|Solution]]
  
\vskip .6in
+
== Problem 6 ==
 +
<math>P_1</math>, <math>P_2</math>, and <math>P_3</math> are polynomials defined by:
  
<math>6</math>. <math>P_1</math>, <math>P_2</math>, and <math>P_3</math> are polynomials defined by:
+
: <math>P_1(x) = 1+x+x^3+x^4+\cdots+x^{96}+x^{97}+x^{99}+x^{100}</math>
 +
: <math>P_2(x) = 1-x+x^2-\cdots-x^{99}+x^{100}</math>
 +
: <math>P_3(x) = 1+x+x^2+\cdots+x^{66}+x^{67}</math>
  
\begin{center}
+
Find the number of distinct complex roots of <math>P_1 \cdot P_2 \cdot P_3</math>.
<math>P_1(x) = 1+x+x^3+x^4+\cdots+x^{96}+x^{97}+x^{99}+x^{100}</math> \\
 
<math>P_2(x) = 1-x+x^2-\cdots-x^{99}+x^{100}</math> \
 
<math>P_3(x) = 1+x+x^2+\cdots+x^{66}+x^{67}</math>.
 
\end{center}
 
  
Find the number of distinct complex roots of <math>P_1 \cdot P_2 \cdot P_3</math>.
+
[[Mock AIME 5 2005-2006/Problem 6|Solution]]
  
\vskip .6in
+
== Problem 7 ==
 +
A coin of radius <math>1</math> is flipped onto an <math>500 \times 500</math> square grid divided into <math>2500</math> equal squares. Circles are inscribed in <math>n</math> of these <math>2500</math> squares. Let <math>P_n</math> be the probability that, given that the coin lands completely within one of the smaller squares, it also lands completely within one of the circles. Let <math>P</math> be the probability that, when flipped onto the grid, the coin lands completely within one of the smaller squares. Let <math>n_0</math> smallest value of <math>n</math> such that <math>P_n > P</math>. Find the value of <math>\displaystyle \left\lfloor \frac{n_0}{3} \right\rfloor</math>.
  
<math>7</math>. A coin of radius <math>1</math> is flipped onto an <math>500 \times 500</math> square grid divided into <math>2500</math> equal squares. Circles are inscribed in <math>n</math> of these <math>2500</math> squares. Let <math>P_n</math> be the probability that, given that the coin lands completely within one of the smaller squares, it also lands completely within one of the circles. Let <math>P</math> be the probability that, when flipped onto the grid, the coin lands completely within one of the smaller squares. Let <math>n_0</math> smallest value of <math>n</math> such that <math>P_n > P</math>. Find the value of <math>\displaystyle \left\lfloor \frac{n_0}{3} \right\rfloor</math>.
+
[[Mock AIME 5 2005-2006/Problem 7|Solution]]
  
\vskip .6in
+
== Problem 8 ==
 +
Let <math>P</math> be a polyhedron with <math>37</math> faces, all of which are equilateral triangles, squares, or regular pentagons with equal side length. Given there is at least one of each type of face and there are twice as many pentagons as triangles, what is the sum of all the possible number of vertices <math>P</math> can have?
  
<math>8</math>. Let <math>P</math> be a polyhedron with <math>37</math> faces, all of which are equilateral triangles, squares, or regular pentagons with equal side length. Given there is at least one of each type of face and there are twice as many pentagons as triangles, what is the sum of all the possible number of vertices <math>P</math> can have?
+
[[Mock AIME 5 2005-2006/Problem 8|Solution]]
  
\vskip .6in
+
== Problem 9 ==
 +
<math>13</math> nondistinguishable residents are moving into <math>7</math> distinct houses in Conformistville, with at least one resident per house. In how many ways can the residents be assigned to these houses such that there is at least one house with <math>4</math> residents?
  
<math>9</math>. <math>13</math> nondistinguishable residents are moving into <math>7</math> distinct houses in Conformistville, with at least one resident per house. In how many ways can the residents be assigned to these houses such that there is at least one house with <math>4</math> residents?
+
[[Mock AIME 5 2005-2006/Problem 9|Solution]]
  
\vskip .6in
+
== Problem 10 ==
 +
Find the smallest positive integer <math>n</math> such that <math>\displaystyle {2n \choose n}</math> is divisible by all the primes between <math>10</math> and <math>30</math>.
  
<math>10</math>. Find the smallest positive integer <math>n</math> such that <math>\displaystyle \binom{2n}{n}</math> is divisible by all the primes between <math>10</math> and <math>30</math>.
+
[[Mock AIME 5 2005-2006/Problem 10|Solution]]
  
\vskip .6in
+
== Problem 11 ==
 +
Let <math>A</math> be a subset of consecutive elements of <math>S = \{n, n+1, \ldots, n+999\}</math> where <math>n</math> is a positive integer. Define <math>\displaystyle \mu(A) = \sum_{k \in A} \tau(k)</math>, where <math>\tau(k) = 1</math> if <math>k</math> has an odd number of divisors and <math>\tau(k) = 0</math> if <math>k</math> has an even number of divisors. For how many <math>n \le 1000</math> does there exist an <math>A</math> such that <math>|A| = 620</math> and <math>\mu(A) = 11</math>? (<math>|X|</math> denotes the cardinality of the set <math>X</math>, or the number of elements in <math>X</math>)
  
<math>11</math>. Let <math>A</math> be a subset of consecutive elements of <math>S = \{n, n+1, \ldots, n+999\}</math> where <math>n</math> is a positive integer. Define <math>\displaystyle \mu(A) = \sum_{k \in A} \tau(k)</math>, where <math>\tau(k) = 1</math> if <math>k</math> has an odd number of divisors and <math>\tau(k) = 0</math> if <math>k</math> has an even number of divisors. For how many <math>n \le 1000</math> does there exist an <math>A</math> such that <math>|A| = 620</math> and <math>\mu(A) = 11</math>? (<math>|X|</math> denotes the cardinality of the set <math>X</math>, or the number of elements in <math>X</math>)
+
[[Mock AIME 5 2005-2006/Problem 11|Solution]]
  
\vskip .6in
+
== Problem 12 ==
 +
Let <math>ABC</math> be a triangle with <math>AB = 13</math>, <math>BC = 14</math>, and <math>AC = 15</math>. Let <math>D</math> be the foot of the altitude from <math>A</math> to <math>BC</math> and <math>E</math> be the point on <math>BC</math> between <math>D</math> and <math>C</math> such that <math>BD = CE</math>. Extend <math>AE</math> to meet the circumcircle of <math>ABC</math> at <math>F</math>. If the area of triangle <math>FAC</math> is <math>\displaystyle \frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers, find <math>m+n</math>.
  
<math>12</math>. Let <math>ABC</math> be a triangle with <math>AB = 13</math>, <math>BC = 14</math>, and <math>AC = 15</math>. Let <math>D</math> be the foot of the altitude from <math>A</math> to <math>BC</math> and <math>E</math> be the point on <math>BC</math> between <math>D</math> and <math>C</math> such that <math>BD = CE</math>. Extend <math>AE</math> to meet the circumcircle of <math>ABC</math> at <math>F</math>. If the area of triangle <math>FAC</math> is <math>\displaystyle \frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers, find <math>m+n</math>.
+
[[Mock AIME 5 2005-2006/Problem 12|Solution]]
  
\vskip .6in
+
== Problem 13 ==
 +
Let <math>S</math> be the set of positive integers with only odd digits satisfying the following condition: any <math>x \in S</math> with <math>n</math> digits must be divisible by <math>5^n</math>. Let <math>A</math> be the sum of the <math>20</math> smallest elements of <math>S</math>. Find the remainder upon dividing <math>A</math> by <math>1000</math>.
  
<math>13</math>. Let <math>S</math> be the set of positive integers with only odd digits satisfying the following condition: any <math>x \in S</math> with <math>n</math> digits must be divisible by <math>5^n</math>. Let <math>A</math> be the sum of the <math>20</math> smallest elements of <math>S</math>. Find the remainder upon dividing <math>A</math> by <math>1000</math>.
+
[[Mock AIME 5 2005-2006/Problem 13|Solution]]
  
\vskip .6in
+
== Problem 14 ==
 +
Let <math>ABC</math> be a triangle such that <math>AB = 68</math>, <math>BC = 100</math>, and <math>\displaystyle CA = 112</math>. Let <math>H</math> be the orthocenter of <math>\triangle ABC</math> (intersection of the altitudes). Let <math>D</math> be the midpoint of <math>BC</math>, <math>E</math> be the midpoint of <math>CA</math>, and <math>F</math> be the midpoint of <math>AB</math>. Points <math>X</math>, <math>Y</math>, and <math>Z</math> are constructed on <math>HD</math>, <math>HE</math>, and <math>HF</math>, respectively, such that <math>D</math> is the midpoint of <math>XH</math>, <math>E</math> is the midpoint of <math>YH</math>, and <math>F</math> is the midpoint of <math>ZH</math>. Find <math>AX+BY+CZ</math>.
  
<math>14</math>. Let <math>ABC</math> be a triangle such that <math>AB = 68</math>, <math>BC = 100</math>, and <math>CA = 112</math>. Let <math>H</math> be the orthocenter of <math>\triangle ABC</math> (intersection of the altitudes). Let <math>D</math> be the midpoint of <math>BC</math>, <math>E</math> be the midpoint of <math>CA</math>, and <math>F</math> be the midpoint of <math>AB</math>. Points <math>X</math>, <math>Y</math>, and <math>Z</math> are constructed on <math>HD</math>, <math>HE</math>, and <math>HF</math>, respectively, such that <math>D</math> is the midpoint of <math>XH</math>, <math>E</math> is the midpoint of <math>YH</math>, and <math>F</math> is the midpoint of <math>ZH</math>. Find <math>AX+BY+CZ</math>.
+
[[Mock AIME 5 2005-2006/Problem 14|Solution]]
  
\vskip .6in
+
== Problem 15 ==
 +
<math>2006</math> colored beads are placed on a necklace (circular ring) such that each bead is adjacent to two others. The beads are labeled <math>a_0</math>, <math>a_1</math>, <math>\ldots</math>, <math>a_{2005}</math> around the circle in order. Two beads <math>a_i</math> and <math>a_j</math>, where <math>i</math> and <math>j</math> are non-negative integers, satisfy <math>a_i = a_j</math> if and only if the color of <math>a_i</math> is the same as the color of <math>a_j</math>. Given that there exists no non-negative integer <math>m < 2006</math> and positive integer <math>n < 1003</math> such that <math>a_m = a_{m-n} = a_{m+n}</math>, where all subscripts are taken <math>\pmod{2006}</math>, find the minimum number of different colors of beads on the necklace.
  
<math>15</math>. <math>2006</math> colored beads are placed on a necklace (circular ring) such that each bead is adjacent to two others. The beads are labeled <math>a_0</math>, <math>a_1</math>, <math>\ldots</math>, <math>a_{2005}</math> around the circle in order. Two beads <math>a_i</math> and <math>a_j</math>, where <math>i</math> and <math>j</math> are non-negative integers, satisfy <math>a_i = a_j</math> if and only if the color of <math>a_i</math> is the same as the color of <math>a_j</math>. Given that there exists no non-negative integer <math>m < 2006</math> and positive integer <math>n < 1003</math> such that <math>a_m = a_{m-n} = a_{m+n}</math>, where all subscripts are taken <math>\pmod{2006}</math>, find the minimum number of different colors of beads on the necklace.
+
[[Mock AIME 5 2005-2006/Problem 15|Solution]]
  
The problems can be found [http://wangsblog.com/jeffrey/MockAIME5.pdf here].
+
== See also ==
 +
* [[Mock AIME 5 2005-2006]]
 +
* [[Mock AIME]]
 +
* A [http://wangsblog.com/jeffrey/MockAIME5.pdf .pdf] version of the problems

Revision as of 09:59, 25 February 2007

Problem 1

Suppose $n$ is a positive integer. Let $f(n)$ be the sum of the distinct positive prime divisors of $n$ less than $50$ (e.g. $f(12) = 2+3 = 5$ and $f(101) = 0$). Evaluate the remainder when $f(1)+f(2)+\cdots+f(99)$ is divided by $1000$.

Solution

Problem 2

A circle $\omega_1$ of radius $6\sqrt{2}$ is internally tangent to a larger circle $\omega_2$ of radius $12\sqrt{2}$ such that the center of $\omega_2$ lies on $\omega_1$. A diameter $AB$ of $\omega_2$ is drawn tangent to $\omega_1$. A second line $l$ is drawn from $B$ tangent to $\omega_1$. Let the line tangent to $\omega_2$ at $A$ intersect $l$ at $C$. Find the area of $\triangle ABC$.

Solution

Problem 3

A $\emph hailstone$ number $n = d_1d_2 \cdots d_k$, where $d_i$ denotes the $i$th digit in the base-$10$ representation of $n$ for $i = 1,2, \ldots,k$, is a positive integer with distinct nonzero digits such that $d_m < d_{m-1}$ if $m$ is even and $d_m > d_{m-1}$ if $m$ is odd for $m = 1,2,\ldots,k$ (and $d_0 = 0$). Let $a$ be the number of four-digit hailstone numbers and $b$ be the number of three-digit hailstone numbers. Find $a+b$.

Solution

Problem 4

Let $m$ and $n$ be integers such that $1 < m \le 10$ and $m < n \le 100$. Given that $x = \log_m{n}$ and $y = \log_n{m}$, find the number of ordered pairs $(m,n)$ such that $\displaystyle \lfloor x \rfloor = \lceil y \rceil$. ($\lfloor a \rfloor$ is the greatest integer less than or equal to $a$ and $\lceil a \rceil$ is the least integer greater than or equal to $a$).

Solution

Problem 5

Find the largest prime divisor of $25^2+72^2$.

Solution

Problem 6

$P_1$, $P_2$, and $P_3$ are polynomials defined by:

$P_1(x) = 1+x+x^3+x^4+\cdots+x^{96}+x^{97}+x^{99}+x^{100}$
$P_2(x) = 1-x+x^2-\cdots-x^{99}+x^{100}$
$P_3(x) = 1+x+x^2+\cdots+x^{66}+x^{67}$

Find the number of distinct complex roots of $P_1 \cdot P_2 \cdot P_3$.

Solution

Problem 7

A coin of radius $1$ is flipped onto an $500 \times 500$ square grid divided into $2500$ equal squares. Circles are inscribed in $n$ of these $2500$ squares. Let $P_n$ be the probability that, given that the coin lands completely within one of the smaller squares, it also lands completely within one of the circles. Let $P$ be the probability that, when flipped onto the grid, the coin lands completely within one of the smaller squares. Let $n_0$ smallest value of $n$ such that $P_n > P$. Find the value of $\displaystyle \left\lfloor \frac{n_0}{3} \right\rfloor$.

Solution

Problem 8

Let $P$ be a polyhedron with $37$ faces, all of which are equilateral triangles, squares, or regular pentagons with equal side length. Given there is at least one of each type of face and there are twice as many pentagons as triangles, what is the sum of all the possible number of vertices $P$ can have?

Solution

Problem 9

$13$ nondistinguishable residents are moving into $7$ distinct houses in Conformistville, with at least one resident per house. In how many ways can the residents be assigned to these houses such that there is at least one house with $4$ residents?

Solution

Problem 10

Find the smallest positive integer $n$ such that $\displaystyle {2n \choose n}$ is divisible by all the primes between $10$ and $30$.

Solution

Problem 11

Let $A$ be a subset of consecutive elements of $S = \{n, n+1, \ldots, n+999\}$ where $n$ is a positive integer. Define $\displaystyle \mu(A) = \sum_{k \in A} \tau(k)$, where $\tau(k) = 1$ if $k$ has an odd number of divisors and $\tau(k) = 0$ if $k$ has an even number of divisors. For how many $n \le 1000$ does there exist an $A$ such that $|A| = 620$ and $\mu(A) = 11$? ($|X|$ denotes the cardinality of the set $X$, or the number of elements in $X$)

Solution

Problem 12

Let $ABC$ be a triangle with $AB = 13$, $BC = 14$, and $AC = 15$. Let $D$ be the foot of the altitude from $A$ to $BC$ and $E$ be the point on $BC$ between $D$ and $C$ such that $BD = CE$. Extend $AE$ to meet the circumcircle of $ABC$ at $F$. If the area of triangle $FAC$ is $\displaystyle \frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.

Solution

Problem 13

Let $S$ be the set of positive integers with only odd digits satisfying the following condition: any $x \in S$ with $n$ digits must be divisible by $5^n$. Let $A$ be the sum of the $20$ smallest elements of $S$. Find the remainder upon dividing $A$ by $1000$.

Solution

Problem 14

Let $ABC$ be a triangle such that $AB = 68$, $BC = 100$, and $\displaystyle CA = 112$. Let $H$ be the orthocenter of $\triangle ABC$ (intersection of the altitudes). Let $D$ be the midpoint of $BC$, $E$ be the midpoint of $CA$, and $F$ be the midpoint of $AB$. Points $X$, $Y$, and $Z$ are constructed on $HD$, $HE$, and $HF$, respectively, such that $D$ is the midpoint of $XH$, $E$ is the midpoint of $YH$, and $F$ is the midpoint of $ZH$. Find $AX+BY+CZ$.

Solution

Problem 15

$2006$ colored beads are placed on a necklace (circular ring) such that each bead is adjacent to two others. The beads are labeled $a_0$, $a_1$, $\ldots$, $a_{2005}$ around the circle in order. Two beads $a_i$ and $a_j$, where $i$ and $j$ are non-negative integers, satisfy $a_i = a_j$ if and only if the color of $a_i$ is the same as the color of $a_j$. Given that there exists no non-negative integer $m < 2006$ and positive integer $n < 1003$ such that $a_m = a_{m-n} = a_{m+n}$, where all subscripts are taken $\pmod{2006}$, find the minimum number of different colors of beads on the necklace.

Solution

See also