Difference between revisions of "1968 IMO Problems/Problem 5"

m
 
Line 20: Line 20:
  
 
(b) <math>f(x) = 1</math> when <math>2n\le x < 2n+1</math> for some integer <math>n</math>, and <math>f(x)=\frac{1}{2}</math> when <math>2n+1\le x < 2n+2</math> for some integer <math>n</math>.
 
(b) <math>f(x) = 1</math> when <math>2n\le x < 2n+1</math> for some integer <math>n</math>, and <math>f(x)=\frac{1}{2}</math> when <math>2n+1\le x < 2n+2</math> for some integer <math>n</math>.
 +
 +
== See Also == {{IMO box|year=1968|num-b=4|num-a=6}}
  
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Functional Equation Problems]]
 
[[Category:Functional Equation Problems]]

Latest revision as of 12:33, 29 January 2021

Problem 5

Let $f$ be a real-valued function defined for all real numbers $x$ such that, for some positive constant $a$, the equation \[f(x + a) = \frac{1}{2} + \sqrt{f(x) - (f(x))^2}\] holds for all $x$.

(a) Prove that the function $f$ is periodic (i.e., there exists a positive number $b$ such that $f(x + b) = f(x)$ for all $x$).

(b) For $a = 1$, give an example of a non-constant function with the required properties.

Solution

(a) Since \[f(x+a) \ge \frac{1}{2}\] is true for any $x$, and \[f(x+a)(1-f(x+a)) = \frac{1}{4} - (f(x)-(f(x))^2) = (\frac{1}{2}-f(x))^2\]

We have: \[f(x+2a) = \frac{1}{2} + \sqrt{(\frac{1}{2}-f(x))^2} = \frac{1}{2} + (f(x) - \frac{1}{2}) = f(x)\] Therefore $f$ is periodic, with $2a>0$ as a period.

(b) $f(x) = 1$ when $2n\le x < 2n+1$ for some integer $n$, and $f(x)=\frac{1}{2}$ when $2n+1\le x < 2n+2$ for some integer $n$.

See Also

1968 IMO (Problems) • Resources
Preceded by
Problem 4
1 2 3 4 5 6 Followed by
Problem 6
All IMO Problems and Solutions