|
|
Line 1: |
Line 1: |
− | =Definition=
| + | another troll theorem here |
− | The Cooga Georgeooga-Harryooga Theorem (Circular Georgeooga-Harryooga Theorem) states that if you have <math>a</math> distinguishable objects and <math>b</math> objects are kept away from each other, then there are <math>\frac{(a-b)!^2}{(a-2b)!}</math> ways to arrange the objects in a circle.
| |
− | | |
− | | |
− | Created by George and Harry of [https://www.youtube.com/channel/UC50E9TuLIMWbOPUX45xZPaQ The Ooga Booga Tribe of The Caveman Society]
| |
− | | |
− | =Proofs=
| |
− | ==Proof 1==
| |
− | Let our group of <math>a</math> objects be represented like so <math>1</math>, <math>2</math>, <math>3</math>, ..., <math>a-1</math>, <math>a</math>. Let the last <math>b</math> objects be the ones we can't have together.
| |
− | | |
− | Then we can organize our objects like so <asy>
| |
− | label("$1$", dir(90));
| |
− | label("BLANK", dir(60));
| |
− | label("$2$", dir(30));
| |
− | label("BLANK", dir(0));
| |
− | label("$3$", dir(-30));
| |
− | label("BLANK", dir(-60));
| |
− | label("$\dots$", dir(-90));
| |
− | label("BLANK", dir(-120));
| |
− | label("$a-b-1$", dir(-150));
| |
− | label("BLANK", dir(-180));
| |
− | label("$a-b$", dir(-210));
| |
− | label("BLANK", dir(-240));
| |
− | </asy>
| |
− | | |
− | We have <math>(a-b)!</math> ways to arrange the objects in that list.
| |
− | | |
− | Now we have <math>a-b</math> blanks and <math>b</math> other objects so we have <math>_{a-b}P_{b}=\frac{(a-b)!}{(a-2b)!}</math> ways to arrange the objects we can't put together.
| |
− | | |
− | By The Fundamental Counting Principal our answer is <math>\frac{(a-b)!^2}{(a-2b)!}</math>.
| |
− | | |
− | | |
− | Proof by [[User:RedFireTruck|RedFireTruck]]
| |
− | | |
− | =Testimonials=
| |
− | "Thanks for rediscovering our theorem [[User:Redfiretruck|RedFireTruck]]" - George and Harry of [https://www.youtube.com/channel/UC50E9TuLIMWbOPUX45xZPaQ The Ooga Booga Tribe of The Caveman Society]
| |
− | | |
− | "This is GREAT!!!" ~ hi..
| |
Revision as of 00:28, 1 February 2021
another troll theorem here