Difference between revisions of "2021 AMC 10B Problems/Problem 13"
m |
Zeusthemoose (talk | contribs) m (→Probelm) |
||
Line 1: | Line 1: | ||
− | == | + | ==Problem== |
Let <math>n</math> be a positive integer and <math>d</math> be a digit such that the value of the numeral <math>\underline{32d}</math> in base <math>n</math> equals <math>263</math>, and the value of the numeral <math>\underline{324}</math> in base <math>n</math> equals the value of the numeral <math>\underline{11d1}</math> in base six. What is <math>n + d ?</math> | Let <math>n</math> be a positive integer and <math>d</math> be a digit such that the value of the numeral <math>\underline{32d}</math> in base <math>n</math> equals <math>263</math>, and the value of the numeral <math>\underline{324}</math> in base <math>n</math> equals the value of the numeral <math>\underline{11d1}</math> in base six. What is <math>n + d ?</math> | ||
<math>\textbf{(A)} ~10 \qquad\textbf{(B)} ~11 \qquad\textbf{(C)} ~13 \qquad\textbf{(D)} ~15 \qquad\textbf{(E)} ~16</math> | <math>\textbf{(A)} ~10 \qquad\textbf{(B)} ~11 \qquad\textbf{(C)} ~13 \qquad\textbf{(D)} ~15 \qquad\textbf{(E)} ~16</math> | ||
+ | |||
==Solution== | ==Solution== | ||
B | B |
Revision as of 19:49, 11 February 2021
Problem
Let be a positive integer and be a digit such that the value of the numeral in base equals , and the value of the numeral in base equals the value of the numeral in base six. What is
Solution
B