Difference between revisions of "2021 AMC 10B Problems/Problem 15"

m (Solution)
(Solution)
Line 5: Line 5:
 
<math>\textbf{(A)} ~-1 \qquad\textbf{(B)} ~0 \qquad\textbf{(C)} ~1 \qquad\textbf{(D)} ~2 \qquad\textbf{(E)} ~\sqrt{5}</math>
 
<math>\textbf{(A)} ~-1 \qquad\textbf{(B)} ~0 \qquad\textbf{(C)} ~1 \qquad\textbf{(D)} ~2 \qquad\textbf{(E)} ~\sqrt{5}</math>
  
==Solution==
+
==Solution 1==
  
 
We square <math>x+\frac{1}{x}=\sqrt5</math> to get <math>x^2+2+\frac{1}{x^2}=5</math>. We subtract 2 on both sides for <math>x^2+\frac{1}{x^2}=3</math> and square again, and see that <math>x^4+2+\frac{1}{x^4}=9</math> so <math>x^4+\frac{1}{x^4}=7</math>. We can divide our original expression of <math>x^{11}-7x^7+x^3</math> by <math>x^7</math> to get that it is equal to <math>x^7(x^4-7+\frac{1}{x^4})</math>. Therefore because <math>x^4+\frac{1}{x^4}</math> is 7, it is equal to <math>x^7(0)=\boxed{(B) 0}</math>.
 
We square <math>x+\frac{1}{x}=\sqrt5</math> to get <math>x^2+2+\frac{1}{x^2}=5</math>. We subtract 2 on both sides for <math>x^2+\frac{1}{x^2}=3</math> and square again, and see that <math>x^4+2+\frac{1}{x^4}=9</math> so <math>x^4+\frac{1}{x^4}=7</math>. We can divide our original expression of <math>x^{11}-7x^7+x^3</math> by <math>x^7</math> to get that it is equal to <math>x^7(x^4-7+\frac{1}{x^4})</math>. Therefore because <math>x^4+\frac{1}{x^4}</math> is 7, it is equal to <math>x^7(0)=\boxed{(B) 0}</math>.
 +
 +
==Solution 2==
 +
 +
Multiplying both sides by <math>x</math> and using the quadratic formula, we get <math>\frac{\sqrt{5} \pm 1}{2}</math>. We can assume that it is <math>\frac{\sqrt{5}+1}{2}</math>, but notice that this is also a solution the equation <math>x^2-x-1=0</math>, i.e. we have <math>x^2=x+1</math>. Repeatedly using this on the given (you can also just note Fibonacci numbers),
 +
<cmath> \begin{align*}
 +
(x^11)-7x^7+x^3 &= (x^10+x^9)-7x^7+x^3 \
 +
&=(2x^9+x^8)-7x^7+x^3 \
 +
&=(3x^8+2x^7)-7x^7+x^3 \
 +
&=(3x^8-5x^7)+x^3 \
 +
&=(-2x^7+3x^6)+x^3 \
 +
&=(x^6-2x^5)+x^3 \
 +
&=(-x^5+x^4+x^3)
 +
&=-x^3(x^2-x-1)
 +
&=\boxed{(\textbf{B}) 0}
 +
\end{align*}</cmath>

Revision as of 21:15, 11 February 2021

Problem

The real number $x$ satisfies the equation $x+\frac{1}{x} = \sqrt{5}$. What is the value of $x^{11}-7x^{7}+x^3?$

$\textbf{(A)} ~-1 \qquad\textbf{(B)} ~0 \qquad\textbf{(C)} ~1 \qquad\textbf{(D)} ~2 \qquad\textbf{(E)} ~\sqrt{5}$

Solution 1

We square $x+\frac{1}{x}=\sqrt5$ to get $x^2+2+\frac{1}{x^2}=5$. We subtract 2 on both sides for $x^2+\frac{1}{x^2}=3$ and square again, and see that $x^4+2+\frac{1}{x^4}=9$ so $x^4+\frac{1}{x^4}=7$. We can divide our original expression of $x^{11}-7x^7+x^3$ by $x^7$ to get that it is equal to $x^7(x^4-7+\frac{1}{x^4})$. Therefore because $x^4+\frac{1}{x^4}$ is 7, it is equal to $x^7(0)=\boxed{(B) 0}$.

Solution 2

Multiplying both sides by $x$ and using the quadratic formula, we get $\frac{\sqrt{5} \pm 1}{2}$. We can assume that it is $\frac{\sqrt{5}+1}{2}$, but notice that this is also a solution the equation $x^2-x-1=0$, i.e. we have $x^2=x+1$. Repeatedly using this on the given (you can also just note Fibonacci numbers), \begin{align*}  (x^11)-7x^7+x^3 &= (x^10+x^9)-7x^7+x^3 \\ &=(2x^9+x^8)-7x^7+x^3 \\ &=(3x^8+2x^7)-7x^7+x^3 \\ &=(3x^8-5x^7)+x^3 \\ &=(-2x^7+3x^6)+x^3 \\ &=(x^6-2x^5)+x^3 \\ &=(-x^5+x^4+x^3) &=-x^3(x^2-x-1) &=\boxed{(\textbf{B}) 0} \end{align*}