Difference between revisions of "Bretschneider's formula"
Twod horse (talk | contribs) m |
|||
(7 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
Suppose we have a [[quadrilateral]] with [[edge]]s of length <math>a,b,c,d</math> (in that order) and [[diagonal]]s of length <math>p, q</math>. '''Bretschneider's formula''' states that the [[area]] | Suppose we have a [[quadrilateral]] with [[edge]]s of length <math>a,b,c,d</math> (in that order) and [[diagonal]]s of length <math>p, q</math>. '''Bretschneider's formula''' states that the [[area]] | ||
− | <math>[ABCD]=\frac{1}{4} | + | <math>[ABCD]=\frac{1}{4} \cdot \sqrt{4p^2q^2-(b^2+d^2-a^2-c^2)^2}</math>. |
It can be derived with [[vector]] [[geometry]]. | It can be derived with [[vector]] [[geometry]]. | ||
− | == | + | ==Proof== |
− | + | ||
− | + | Suppose a quadrilateral has sides <math>\vec{a}, \vec{b}, \vec{c}, \vec{d}</math> such that <math>\vec{a} + \vec{b} + \vec{c} + \vec{d} = \vec{0}</math> and that the diagonals of the quadrilateral are <math>\vec{p} = \vec{b} + \vec{c} = -\vec{a} - \vec{d}</math> and <math>\vec{q} = \vec{a} + \vec{b} = -\vec{c} - \vec{d}</math>. The area of any such quadrilateral is <math>\frac{1}{2} |\vec{p} \times \vec{q}|</math>. | |
+ | |||
+ | |||
+ | <math>K = \frac{1}{2} |\vec{p} \times \vec{q}| </math> | ||
+ | |||
+ | [[Lagrange's Identity]] states that <math>|\vec{a}|^2|\vec{b}|^2-(\vec{a}\cdot\vec{b})^2=|\vec{a}\times\vec{b}|^2 \implies \sqrt{|\vec{a}|^2|\vec{b}|^2-(\vec{a}\cdot\vec{b})^2}=|\vec{a}\times\vec{b}|</math>. Therefore: | ||
+ | |||
+ | <math>K = \frac{1}{2} \sqrt{|\vec{p}|^2|\vec{q}|^2 - (\vec{p} \cdot \vec{q})^2} </math> | ||
+ | |||
+ | <math>= \frac{1}{4} \sqrt{4 |\vec{p}|^2|\vec{q}|^2 - (2 \vec{p} \cdot \vec{q})^2} </math> | ||
+ | |||
+ | <math>= \frac{1}{4} \sqrt{4 |\vec{p}|^2|\vec{q}|^2 - [2 (\vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b})]^2} </math> | ||
+ | |||
+ | <math>= \frac{1}{4} \sqrt{4 |\vec{p}|^2|\vec{q}|^2 - [2 \vec{b} \cdot (\vec{a} + \vec{b}) + 2 \vec{c} \cdot (\vec{a} + \vec{b})]^2} </math> | ||
+ | |||
+ | <math>= \frac{1}{4} \sqrt{4 |\vec{p}|^2|\vec{q}|^2 - [-2 \vec{b} \cdot (\vec{c} + \vec{d}) + 2 \vec{c} \cdot (\vec{a} + \vec{b})]^2} </math> | ||
+ | |||
+ | <math>= \frac{1}{4} \sqrt{4 |\vec{p}|^2|\vec{q}|^2 - [-2 \vec{b} \cdot \vec{c} - 2 \vec{b} \cdot \vec{d} + 2 \vec{a} \cdot \vec{c} + 2 \vec{b} \cdot \vec{c}]^2}</math> | ||
+ | |||
+ | <math>= \frac{1}{4} \sqrt{4 |\vec{p}|^2|\vec{q}|^2 - [2 \vec{a} \cdot \vec{c} - 2 \vec{b} \cdot \vec{d}]^2} </math> | ||
+ | |||
+ | <math>= \frac{1}{4} \sqrt{4 |\vec{p}|^2|\vec{q}|^2 - ([(\vec{a} + \vec{c})\cdot(\vec{a} + \vec{c}) - \vec{a}\cdot\vec{a} - \vec{c}\cdot\vec{c}] - [(\vec{b} + \vec{d})\cdot(\vec{b} + \vec{d}) - \vec{b}\cdot\vec{b} - \vec{d}\cdot\vec{d}])^2} </math> | ||
+ | |||
+ | <math>= \frac{1}{4} \sqrt{4 |\vec{p}|^2|\vec{q}|^2 - [|\vec{b}|^2 + |\vec{d}|^2 - |\vec{a}|^2 - |\vec{c}|^2 + (\vec{a} + \vec{c})\cdot(\vec{a} + \vec{c}) - (\vec{b} + \vec{d})\cdot(\vec{b} + \vec{d})]^2} </math> | ||
+ | |||
+ | <math>= \frac{1}{4} \sqrt{4 |\vec{p}|^2|\vec{q}|^2 - [|\vec{b}|^2 + |\vec{d}|^2 - |\vec{a}|^2 - |\vec{c}|^2 + |\vec{a} + \vec{c}|^2 - |\vec{b} + \vec{d}|^2]^2} </math> | ||
+ | |||
+ | <math>= \frac{1}{4} \sqrt{4 |\vec{p}|^2|\vec{q}|^2 - [|\vec{b}|^2 + |\vec{d}|^2 - |\vec{a}|^2 - |\vec{c}|^2 + |\vec{a} + \vec{c}|^2 - |-(\vec{a} + \vec{c})|^2]^2} </math> | ||
− | + | <math>= \frac{1}{4} \sqrt{4 |\vec{p}|^2|\vec{q}|^2 - [|\vec{b}|^2 + |\vec{d}|^2 - |\vec{a}|^2 - |\vec{c}|^2]^2} </math> | |
− | |||
− | |||
− | |||
− | |||
− | + | Then if <math>a, b, c, d</math> represent <math>|\vec{a}|, |\vec{b}|, |\vec{c}|, |\vec{d}|</math> (and are thus the side lengths) while <math>p, q</math> represent <math>|\vec{p}|, |\vec{q}|</math> (and are thus the diagonal lengths), the area of a quadrilateral is: | |
− | |||
− | + | <cmath> K = \frac{1}{4} \sqrt{4p^2q^2 - (b^2 + d^2 - a^2 - c^2)^2} </cmath> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==See Also== | |
− | + | * [[Brahmagupta's formula]] | |
+ | * [[Geometry]] | ||
− | + | [[Category:Geometry]] | |
− | : | + | [[Category:Theorems]] |
− | |||
− | |||
− | |||
− |
Latest revision as of 02:51, 12 February 2021
Suppose we have a quadrilateral with edges of length (in that order) and diagonals of length . Bretschneider's formula states that the area .
It can be derived with vector geometry.
Proof
Suppose a quadrilateral has sides such that and that the diagonals of the quadrilateral are and . The area of any such quadrilateral is .
Lagrange's Identity states that . Therefore:
Then if represent (and are thus the side lengths) while represent (and are thus the diagonal lengths), the area of a quadrilateral is: