Difference between revisions of "1956 AHSME Problems/Problem 46"

(Created page with "== Solution == Simplify. <cmath> Cross Multiply</cmath> <cmath> N + N X = ( 1 - x ) ( N + 1)</cmath> <cmath>6 = -2\sqrt{x-3}</cmath> The answer is <math>\boxed{A}.</math> -ru...")
 
(Solution)
Line 1: Line 1:
 
== Solution ==
 
== Solution ==
 
Simplify.
 
Simplify.
<cmath> Cross Multiply</cmath>
+
<cmath> Cross Multiply</cmath>
 
<cmath> N + N X = ( 1 - x ) ( N + 1)</cmath>
 
<cmath> N + N X = ( 1 - x ) ( N + 1)</cmath>
<cmath>6 = -2\sqrt{x-3}</cmath>
+
<cmath> Expand  the  Brackets </cmath>
 +
<cmath> N + N X = N + 1 - N X - X </cmath>
 +
Simplify  Again
 +
X  =  1 / 2 N X
 
The answer is <math>\boxed{A}.</math>
 
The answer is <math>\boxed{A}.</math>
  
 
-rubslul
 
-rubslul

Revision as of 04:15, 8 March 2021

Solution

Simplify. \[Cross  Multiply\] \[N + N X = ( 1 - x ) ( N + 1)\] \[Expand  the  Brackets\] \[N + N X = N + 1 - N X - X\] Simplify Again X = 1 / 2 N X The answer is $\boxed{A}.$

-rubslul