Difference between revisions of "2021 AIME I Problems/Problem 3"
MRENTHUSIASM (talk | contribs) m (→Solution 3 (Bash): Added BOLD font in addition to ITALIC. Also, "claim in italics" -> "claim in bold".) |
MRENTHUSIASM (talk | contribs) m (→Solution 3 (Bash): Made the proof steps more stand out.) |
||
Line 49: | Line 49: | ||
<b><i>Note that each of the remaining ordered pairs generates a unique desired positive integer.</i></b> We prove as follows: | <b><i>Note that each of the remaining ordered pairs generates a unique desired positive integer.</i></b> We prove as follows: | ||
− | + | # The positive integers generated in each value of <math>a</math> are clearly different. | |
− | + | # For all integers <math>1\leq k\leq9,</math> the largest positive integer generated for <math>a=k</math> is <math>1</math> less than the smallest positive integer generated for <math>a=k+1.</math> | |
− | |||
Together, we justified our claim in bold. Our answer is <cmath>1+2+3+4+5+6+7+8+9+5=\boxed{050}.</cmath> | Together, we justified our claim in bold. Our answer is <cmath>1+2+3+4+5+6+7+8+9+5=\boxed{050}.</cmath> |
Revision as of 22:54, 13 March 2021
Contents
[hide]Problem
Find the number of positive integers less than that can be expressed as the difference of two integral powers of
Solution 1
We want to find the number of positive integers which can be written in the form for some non-negative integers (note that if , then ). We first observe must be at most 10; if , then . As , we can first choose two different numbers from the set in ways. This includes , , , , which are invalid as in this case. For all other choices and , the value of is less than 1000.
We claim that for all other choices of and , the values of are pairwise distinct. More specifically, if where and , we must show that . Suppose otherwise for sake of contradiction; rearranging yields . We use the fact that every positive integer has a unique binary representation:
If then ; from here we can deduce either and (contradicting the assumption that , or and (contradicting the assumption and ).
If then , and it follows that , also contradicting the assumption . Hence we obtain contradiction.
Then there are choices for for which is a positive integer less than 1000; by the above claim, each choice of results in a different positive integer . Then there are integers which can be expressed as a difference of two powers of 2.
Solution 2 (Casework)
Case 1: When our answer is in the form , where is an integer such that .
We start with the subcase where it is , for some integer where (this is because the case where yields , which doesn't work because it must be a positive integer.) Note that , and . Our answer needs to be less than , so the maximum possible result (in this case) is . Our lowest result is . All the positive powers of two less than work, so we have possibilities for this subcase. For subcases and , we have and possibilities, respectively.
Case 2: When our answer is in the form of , where is an integer such that .
We can start with the subcase where . We notice that , and which is less than , so the greatest result in this subcase is actually , and the lowest is . Thus, we have possibilities. For the other four subcases, we have and possibilities, respectively.
Answer: We note that these are our only cases, as numbers in the form of and beyond are greater than .
Thus, our result is . ~jehu26
Solution 3 (Bash)
We look for all positive integers of the form where Performing casework on we can enumerate all possibilities in the table below: As indicated by the X-marks, the ordered pairs generate which are invalid.
Note that each of the remaining ordered pairs generates a unique desired positive integer. We prove as follows:
- The positive integers generated in each value of are clearly different.
- For all integers the largest positive integer generated for is less than the smallest positive integer generated for
Together, we justified our claim in bold. Our answer is
~MRENTHUSIASM
Solution 4
First, you need to notice that it is impossible to have overlapping, making the problem easier.
Case 1 : There are ways here, from to
It is easy to see here that this continues all the way down to one. However, when the case gets to , there are 5 ways instead of 4 because is smaller than 1000.
Thus,
So the answer is
Video Solution by Punxsutawney Phil
https://youtube.com/watch?v=H17E9n2nIyY&t=569s
Video Solution
https://youtu.be/M3DsERqhiDk?t=749
See also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.