Difference between revisions of "1963 IMO Problems/Problem 1"

(Solution)
(Solution)
Line 12: Line 12:
 
<cmath>x = \frac {4 - p}{2\sqrt {4 - 2p}}</cmath>
 
<cmath>x = \frac {4 - p}{2\sqrt {4 - 2p}}</cmath>
  
However, this is only a solution when <cmath>p + 4 \geq 4x^2 = \frac {(p - 4)^2}{4 - 2p} \iff (p + 4)(4 - 2p)\leq(p - 4)^2 \iff 0\leq p(3p - 4)</cmath>
+
However, this is only a solution when <cmath>p + 4 \geq 4x^2 = \frac {(p - 4)^2}{4 - 2p} \iff (p + 4)(4 - 2p)\geq(p - 4)^2 \iff 0\geq p(3p - 4)</cmath>
  
so we have <math>p\leq 0</math> or <math>p \geq \frac {4}{3}</math>
+
so we have <math>p\geq 0</math> and <math>p \leq \frac {4}{3}</math>
  
But if <math>p < 0</math>, then <math>\sqrt {x^2 - p} > x</math> contradiction.
+
and <math>x = \frac {4 - p}{2\sqrt {4 - 2p}}</math>
 
 
So we have <math>x = \frac {4 - p}{2\sqrt {4 - 2p}}</math> for <math>p = 0, \frac {4}{3}\leq p < 2</math>.
 
  
 
==See Also==
 
==See Also==
  
 
{{IMO box|year=1963|before=First Question|num-a=2}}
 
{{IMO box|year=1963|before=First Question|num-a=2}}

Revision as of 02:36, 26 April 2021

Problem

Find all real roots of the equation

$\sqrt{x^2-p}+2\sqrt{x^2-1}=x$,

where $p$ is a real parameter.

Solution

Assuming $x \geq 0$, square the equation, obtaining \[4\sqrt {(x^2 - p)(x^2 - 1)} = p + 4 - 4x^2\]. If we have $p + 4 \geq 4x^2$, we can square again, obtaining \[x^2 = \frac {(p - 4)^2}{4(4 - 2p)} \implies x = \pm\frac {p - 4}{2\sqrt {4 - 2p}}\]

We must have $4 - 2p > 0 \iff p < 2$, so we have \[x = \frac {4 - p}{2\sqrt {4 - 2p}}\]

However, this is only a solution when \[p + 4 \geq 4x^2 = \frac {(p - 4)^2}{4 - 2p} \iff (p + 4)(4 - 2p)\geq(p - 4)^2 \iff 0\geq p(3p - 4)\]

so we have $p\geq 0$ and $p \leq \frac {4}{3}$

and $x = \frac {4 - p}{2\sqrt {4 - 2p}}$

See Also

1963 IMO (Problems) • Resources
Preceded by
First Question
1 2 3 4 5 6 Followed by
Problem 2
All IMO Problems and Solutions