|
|
(31 intermediate revisions by 13 users not shown) |
Line 1: |
Line 1: |
− | In square <math>ABCD</math>, points <math>E</math> and <math>H</math> lie on <math>\overline{AB}</math> and <math>\overline{DA}</math>, respectively, so that <math>AE=AH.</math> Points <math>F</math> and <math>G</math> lie on <math>\overline{BC}</math> and <math>\overline{CD}</math>, respectively, and points <math>I</math> and <math>J</math> lie on <math>\overline{EH}</math> so that <math>\overline{FI} \perp \overline{EH}</math> and <math>\overline{GJ} \perp \overline{EH}</math>. See the figure below. Triangle <math>AEH</math>, quadrilateral <math>BFIE</math>, quadrilateral <math>DHJG</math>, and pentagon <math>FCGJI</math> each has area <math>1.</math> What is <math>FI^2</math>?
| + | #redirect [[2020 AMC 10B Problems/Problem 21]] |
− | <asy>
| |
− | real x=2sqrt(2);
| |
− | real y=2sqrt(16-8sqrt(2))-4+2sqrt(2);
| |
− | real z=2sqrt(8-4sqrt(2));
| |
− | pair A, B, C, D, E, F, G, H, I, J;
| |
− | A = (0,0);
| |
− | B = (4,0);
| |
− | C = (4,4);
| |
− | D = (0,4);
| |
− | E = (x,0);
| |
− | F = (4,y);
| |
− | G = (y,4);
| |
− | H = (0,x);
| |
− | I = F + z * dir(225);
| |
− | J = G + z * dir(225);
| |
− | | |
− | draw(A--B--C--D--A);
| |
− | draw(H--E);
| |
− | draw(J--G^^F--I);
| |
− | draw(rightanglemark(G, J, I), linewidth(.5));
| |
− | draw(rightanglemark(F, I, E), linewidth(.5));
| |
− | | |
− | dot("$A$", A, S);
| |
− | dot("$B$", B, S);
| |
− | dot("$C$", C, dir(90));
| |
− | dot("$D$", D, dir(90));
| |
− | dot("$E$", E, S);
| |
− | dot("$F$", F, dir(0));
| |
− | dot("$G$", G, N);
| |
− | dot("$H$", H, W);
| |
− | dot("$I$", I, SW);
| |
− | dot("$J$", J, SW);
| |
− | </asy>
| |
− | | |
− | <math>\textbf{(A) } \frac{7}{3} \qquad \textbf{(B) } 8-4\sqrt2 \qquad \textbf{(C) } 1+\sqrt2 \qquad \textbf{(D) } \frac{7}{4}\sqrt2 \qquad \textbf{(E) } 2\sqrt2</math>
| |
− | ==Solution==
| |
− | | |
− | Plot a point <math>F'</math> such that <math>F'</math> and <math>I</math> are collinear and extend line <math>FB</math> to point <math>B'</math> such that <math>FIB'F'</math> forms a square. Extend line <math>AE</math> to meet line F'B' and point <math>E'</math> is the intersection of the two. The area of this square is equivalent to <math>FI^2</math>. We see that the area of square <math>ABCD</math> is <math>4</math>, meaning each side is of length 2. The area of the quadrilateral <math>EIFF'E'</math> is <math>2</math>. Length <math>AE=\sqrt{2}</math>, thus <math>EB=2-\sqrt{2}</math>. Triangle <math>EB'E'</math> is isosceles, and the area of this triangle is <math>\frac{1}{2}(4-2\sqrt{2})(2-\sqrt{2})=6-4\sqrt{2}</math>. Adding these two areas, we get $2+6-4\sqrt{2}=8-4\sqrt{2}}
| |
− | | |
− | {{AMC12 box|year=2020|ab=B|num-b=12|num-a=14}}
| |
− | {{MAA Notice}}
| |