Difference between revisions of "2005 Alabama ARML TST Problems/Problem 7"
(→Solution) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | <math>\sum_{n=1}^{\infty} \frac{n^2+2n+3}{2^n}=\sum_{n=1}^{\infty} \left(\frac{n^2}{2^n}\right)+\sum_{n=1}^{\infty} \left(\frac{2n}{2^n}\right)+\sum_{n=1}^{\infty} \left(\frac{3}{2^n}\right)</math> | ||
− | {{ | + | We can compute those sums: |
+ | |||
+ | <cmath>\begin{eqnarray*} | ||
+ | \sum_{n=1}^{\infty} \left(\frac{3}{2^n}\right)=x\\ | ||
+ | =3\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right)\\ | ||
+ | 2x=3\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right)\\ | ||
+ | x=3(1)=3\\ | ||
+ | \sum_{n=1}^{\infty} \left(\frac{2n}{2^n}\right)=y\\ | ||
+ | =\frac{2}{2}+\frac{4}{4}+\frac{6}{8}+\frac{8}{16}+\cdots\\ | ||
+ | 2y=2+\frac{4}{2}+\frac{6}{4}+\frac{8}{8}+\cdots\\ | ||
+ | y=2+\frac{2}{2}+\frac{2}{4}+\frac{2}{8}+\cdots=4\\ | ||
+ | \sum_{n=1}^{\infty} \left(\frac{n^2}{2^n}\right)=z\\ | ||
+ | =\frac{1}{2}+\frac{4}{4}+\frac{9}{8}+\frac{16}{16}+\cdots\\ | ||
+ | 2z=1+\frac{4}{2}+\frac{9}{4}+\frac{16}{8}+\cdots\\ | ||
+ | z=1+\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+\frac{9}{16}+\cdots\\ | ||
+ | 2z=2+3+\frac{5}{2}+\frac{7}{4}+\frac{9}{8}+\cdots\\ | ||
+ | z=4+\frac{2}{2}+\frac{2}{4}+\frac{2}{8}+\cdots=6\\ | ||
+ | 3+4+6=\boxed{13} | ||
+ | \end{eqnarray*}</cmath> | ||
+ | |||
+ | If you didn't understand the third case / summation, all they did was subtract the summation for <math>z</math> from <math>2z</math> to get the new <math>z</math> and then repeat this. | ||
==See Also== | ==See Also== |
Latest revision as of 20:13, 18 May 2021
Problem
Find the sum of the infinite series:
Solution
We can compute those sums:
If you didn't understand the third case / summation, all they did was subtract the summation for from to get the new and then repeat this.
See Also
2005 Alabama ARML TST (Problems) | ||
Preceded by: Problem 6 |
Followed by: Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |