Difference between revisions of "1989 AIME Problems/Problem 8"
m (→Solution 5(Very Cheap)(Not advised)) |
MRENTHUSIASM (talk | contribs) (Reformatted the solutions. I will reconstruct Solutions 1 and 3.) |
||
Line 7: | Line 7: | ||
Find the value of <math>16x_1+25x_2+36x_3+49x_4+64x_5+81x_6+100x_7</math>. | Find the value of <math>16x_1+25x_2+36x_3+49x_4+64x_5+81x_6+100x_7</math>. | ||
− | + | == Solution 1 == | |
− | |||
− | |||
− | |||
Notice that because we are given a system of <math>3</math> equations with <math>7</math> unknowns, the values <math>(x_1, x_2, \ldots, x_7)</math> are not fixed; indeed one can take any four of the variables and assign them arbitrary values, which will in turn fix the last three. | Notice that because we are given a system of <math>3</math> equations with <math>7</math> unknowns, the values <math>(x_1, x_2, \ldots, x_7)</math> are not fixed; indeed one can take any four of the variables and assign them arbitrary values, which will in turn fix the last three. | ||
Line 28: | Line 25: | ||
Subtracting the second and third equations yields that <math>b = -3</math>, so <math>c = 3</math> and <math>a = 1</math>. It follows that the desired expression is <math>a \cdot (1) + b \cdot (12) + c \cdot (123) = 1 - 36 + 369 = \boxed{334}</math>. | Subtracting the second and third equations yields that <math>b = -3</math>, so <math>c = 3</math> and <math>a = 1</math>. It follows that the desired expression is <math>a \cdot (1) + b \cdot (12) + c \cdot (123) = 1 - 36 + 369 = \boxed{334}</math>. | ||
− | + | == Solution 2== | |
Notice that we may rewrite the equations in the more compact form as: | Notice that we may rewrite the equations in the more compact form as: | ||
Line 42: | Line 39: | ||
Alternatively, applying finite differences, one obtains <math>c_4 = {3 \choose 2}f(2) - {3 \choose 1}f(1) + {3 \choose 0}f(0) =334</math>. | Alternatively, applying finite differences, one obtains <math>c_4 = {3 \choose 2}f(2) - {3 \choose 1}f(1) + {3 \choose 0}f(0) =334</math>. | ||
− | + | == Solution 3 == | |
Notice that <math>3(n+2)^2-3(n+1)^2+n^2=(n+3)^2</math> | Notice that <math>3(n+2)^2-3(n+1)^2+n^2=(n+3)^2</math> | ||
Line 61: | Line 58: | ||
So <math>(4)=3*123-3*12+1=\boxed{334}</math> | So <math>(4)=3*123-3*12+1=\boxed{334}</math> | ||
− | + | ==Solution 4== | |
Notice subtracting the first equation from the second yields <math>3x_1 + 5x_2 + ... + 15x_7 = 11</math>. Then, repeating for the 2nd and 3rd equations, and then subtracting the result from the first obtained equation, we get <math>2x_1 + 2x_2 + ... +2x_7 = 100</math>. Adding this twice to the first obtained equation gives difference of the desired equation and 3rd equation, which is 211. Adding to the 3rd equation, we get <math>\boxed{334}.</math> | Notice subtracting the first equation from the second yields <math>3x_1 + 5x_2 + ... + 15x_7 = 11</math>. Then, repeating for the 2nd and 3rd equations, and then subtracting the result from the first obtained equation, we get <math>2x_1 + 2x_2 + ... +2x_7 = 100</math>. Adding this twice to the first obtained equation gives difference of the desired equation and 3rd equation, which is 211. Adding to the 3rd equation, we get <math>\boxed{334}.</math> | ||
− | ==Solution 5(Very Cheap | + | ==Solution 5 (Very Cheap: Not Recommended)== |
We let <math>(x_4,x_5,x_6,x_7)=(0,0,0,0)</math>. Thus, we have | We let <math>(x_4,x_5,x_6,x_7)=(0,0,0,0)</math>. Thus, we have | ||
Revision as of 00:30, 24 June 2021
Contents
Problem
Assume that are real numbers such that
Find the value of .
Solution 1
Notice that because we are given a system of equations with unknowns, the values are not fixed; indeed one can take any four of the variables and assign them arbitrary values, which will in turn fix the last three.
Given this, we suspect there is a way to derive the last expression as a linear combination of the three given expressions. Let the coefficent of in the first equation be ; then its coefficients in the second equation is and the third as . We need to find a way to sum these to make [this is in fact a specific approach generalized by the next solution below].
Thus, we hope to find constants satisfying . FOILing out all of the terms, we get
Comparing coefficents gives us the three equation system:
Subtracting the second and third equations yields that , so and . It follows that the desired expression is .
Solution 2
Notice that we may rewrite the equations in the more compact form as:
and
where and is what we're trying to find.
Now consider the polynomial given by (we are only treating the as coefficients).
Notice that is in fact a quadratic. We are given as and are asked to find . Using the concept of finite differences (a prototype of differentiation) we find that the second differences of consecutive values is constant, so that by arithmetic operations we find .
Alternatively, applying finite differences, one obtains .
Solution 3
Notice that
I'll number the equations for convenience
Let the coefficient of in be . Then the coefficient of in is etc.
Therefore,
So
Solution 4
Notice subtracting the first equation from the second yields . Then, repeating for the 2nd and 3rd equations, and then subtracting the result from the first obtained equation, we get . Adding this twice to the first obtained equation gives difference of the desired equation and 3rd equation, which is 211. Adding to the 3rd equation, we get
Solution 5 (Very Cheap: Not Recommended)
We let . Thus, we have
Grinding this out, we have which gives as our final answer.
-Pleaseletmewin
Video Solution
https://www.youtube.com/watch?v=4mOROTEkvWI ~ MathEx
See also
1989 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.