Difference between revisions of "2015 USAMO Problems/Problem 2"
m (→Fake Solution) |
|||
(4 intermediate revisions by 2 users not shown) | |||
Line 55: | Line 55: | ||
== Solution 3(synthetic) == | == Solution 3(synthetic) == | ||
To begin with, we connect <math>\overline{AT}</math> and we construct the nine-point circle of <math>\triangle AST</math> centered at <math>N_9</math>. | To begin with, we connect <math>\overline{AT}</math> and we construct the nine-point circle of <math>\triangle AST</math> centered at <math>N_9</math>. | ||
− | Lemma <math>1</math>: <math>AX \cdot AS = AP^2</math> | + | |
− | We proceed on a directed angle chase. We get <math>\measuredangle ASP = \measuredangle AQP = \measuredangle QPA</math>, so <math>\triangle | + | Lemma <math>1</math>: <math>AX \cdot AS = AP^2</math>. |
+ | We proceed on a directed angle chase. We get <math>\measuredangle ASP = \measuredangle AQP = \measuredangle QPA</math>, so <math>\triangle PAS \sim \triangle XAP</math> and the desired result follows by side length ratios. | ||
Lemma <math>2</math>: The locus of <math>N_9</math> as <math>X</math> moves along <math>\overline{PQ}</math> is a circle centered about <math>A</math>. | Lemma <math>2</math>: The locus of <math>N_9</math> as <math>X</math> moves along <math>\overline{PQ}</math> is a circle centered about <math>A</math>. | ||
Line 64: | Line 65: | ||
Next, consider the homothety of scale factor <math>\frac{2}{3}</math> about <math>O</math> mapping <math>N_9</math> to <math>G</math>. This means that the locus of <math>G</math> is a circle as well. | Next, consider the homothety of scale factor <math>\frac{2}{3}</math> about <math>O</math> mapping <math>N_9</math> to <math>G</math>. This means that the locus of <math>G</math> is a circle as well. | ||
− | Finally, we take a homothety of scale factor <math>\frac{3}{2}</math> about <math>A</math> mapping <math>G</math> to <math>M</math>. Hence, the locus of <math>M</math> is a circle, as desired. | + | Finally, we take a homothety of scale factor <math>\frac{3}{2}</math> about <math>A</math> mapping <math>G</math> to <math>M</math>. Hence, the locus of <math>M</math> is a circle, as desired. - Spacesam |
− | |||
− |
Latest revision as of 08:58, 20 August 2021
Contents
[hide]Problem
Quadrilateral is inscribed in circle with and . Let be a variable point on segment . Line meets again at (other than ). Point lies on arc of such that is perpendicular to . Let denote the midpoint of chord . As varies on segment , show that moves along a circle.
Solution 1
We will use coordinate geometry.
Without loss of generality, let the circle be the unit circle centered at the origin, , where .
Let angle , which is an acute angle, , then .
Angle , . Let , then .
The condition yields: (E1)
Use identities , , , we obtain . (E1')
The condition that is on the circle yields , namely . (E2)
is the mid-point on the hypotenuse of triangle , hence , yielding . (E3)
Expand (E3), using (E2) to replace with , and using (E1') to replace with , and we obtain , namely , which is a circle centered at with radius .
Solution 2
Let the midpoint of be . We claim that moves along a circle with radius .
We will show that , which implies that , and as is fixed, this implies the claim.
by the median formula on .
by the median formula on .
.
As , from right triangle .
By , .
Since is the circumcenter of , and is the circumradius, the expression is the power of point with respect to . However, as is also the power of point with respect to , this implies that .
By ,
Finally, by AA similarity ( and ), so .
By , , so , as desired.
Solution 3(synthetic)
To begin with, we connect and we construct the nine-point circle of centered at .
Lemma : . We proceed on a directed angle chase. We get , so and the desired result follows by side length ratios.
Lemma : The locus of as moves along is a circle centered about . We add the midpoint of , , and let the circumradius of be . Taking the power of with respect to , we get Hence, , which remains constant as moves.
Next, consider the homothety of scale factor about mapping to . This means that the locus of is a circle as well.
Finally, we take a homothety of scale factor about mapping to . Hence, the locus of is a circle, as desired. - Spacesam