Difference between revisions of "1981 AHSME Problems/Problem 20"

(Created page with "==Problem== A ray of light originates from point <math>A</math> and travels in a plane, being reflected <math>n</math> times between lines <math>AD</math> and <math>CD</math>...")
 
(Problem)
Line 3: Line 3:
 
A ray of light originates from point <math>A</math> and travels in a plane, being reflected <math>n</math> times between lines <math>AD</math> and <math>CD</math> before striking a point <math>B</math> (which may be on <math>AD</math> or <math>CD</math>) perpendicularly and retracing its path back to <math>A</math> (At each point of reflection the light makes two equal angles as indicated in the adjoining figure. The figure shows the light path for <math>n=3</math>). If <math>\measuredangle CDA=8^\circ</math>, what is the largest value <math>n</math> can have?
 
A ray of light originates from point <math>A</math> and travels in a plane, being reflected <math>n</math> times between lines <math>AD</math> and <math>CD</math> before striking a point <math>B</math> (which may be on <math>AD</math> or <math>CD</math>) perpendicularly and retracing its path back to <math>A</math> (At each point of reflection the light makes two equal angles as indicated in the adjoining figure. The figure shows the light path for <math>n=3</math>). If <math>\measuredangle CDA=8^\circ</math>, what is the largest value <math>n</math> can have?
  
[asy] unitsize(1.5cm); pair D=origin, A=(-6,0), C=6*dir(160), E=3.2*dir(160), F=(-2.1,0), G=1.5*dir(160), B=(-1.4095,0); draw((-6.5,0)--D--C,black); draw(A--E--F--G--B,black); dotfactor=4; dot("<math>A</math>",A,S); dot("<math>C</math>",C,N); dot("<math>R_1</math>",E,N); dot("<math>R_2</math>",F,S); dot("<math>R_3</math>",G,N); dot("<math>B</math>",B,S); markscalefactor=0.015; draw(rightanglemark(G,B,D)); draw(anglemark(C,E,A,12)); draw(anglemark(F,E,G,12)); draw(anglemark(E,F,A)); draw(anglemark(E,F,A,12)); draw(anglemark(B,F,G)); draw(anglemark(B,F,G,12)); draw(anglemark(E,G,F)); draw(anglemark(E,G,F,12)); draw(anglemark(E,G,F,16)); draw(anglemark(B,G,D)); draw(anglemark(B,G,D,12)); draw(anglemark(B,G,D,16)); [/asy]
+
<math>[asy] unitsize(1.5cm); pair D=origin, A=(-6,0), C=6*dir(160), E=3.2*dir(160), F=(-2.1,0), G=1.5*dir(160), B=(-1.4095,0); draw((-6.5,0)--D--C,black); draw(A--E--F--G--B,black); dotfactor=4; dot("</math>A<math>",A,S); dot("</math>C<math>",C,N); dot("</math>R_1<math>",E,N); dot("</math>R_2<math>",F,S); dot("</math>R_3<math>",G,N); dot("</math>B<math>",B,S); markscalefactor=0.015; draw(rightanglemark(G,B,D)); draw(anglemark(C,E,A,12)); draw(anglemark(F,E,G,12)); draw(anglemark(E,F,A)); draw(anglemark(E,F,A,12)); draw(anglemark(B,F,G)); draw(anglemark(B,F,G,12)); draw(anglemark(E,G,F)); draw(anglemark(E,G,F,12)); draw(anglemark(E,G,F,16)); draw(anglemark(B,G,D)); draw(anglemark(B,G,D,12)); draw(anglemark(B,G,D,16)); [/asy]</math>
 
<math>\textbf{(A)}\ 6\qquad\textbf{(B)}\ 10\qquad\textbf{(C)}\ 38\qquad\textbf{(D)}\ 98\qquad\textbf{(E)}\ \text{There is no largest value.}</math>
 
<math>\textbf{(A)}\ 6\qquad\textbf{(B)}\ 10\qquad\textbf{(C)}\ 38\qquad\textbf{(D)}\ 98\qquad\textbf{(E)}\ \text{There is no largest value.}</math>

Revision as of 18:20, 23 October 2021

Problem

A ray of light originates from point $A$ and travels in a plane, being reflected $n$ times between lines $AD$ and $CD$ before striking a point $B$ (which may be on $AD$ or $CD$) perpendicularly and retracing its path back to $A$ (At each point of reflection the light makes two equal angles as indicated in the adjoining figure. The figure shows the light path for $n=3$). If $\measuredangle CDA=8^\circ$, what is the largest value $n$ can have?

$[asy] unitsize(1.5cm); pair D=origin, A=(-6,0), C=6*dir(160), E=3.2*dir(160), F=(-2.1,0), G=1.5*dir(160), B=(-1.4095,0); draw((-6.5,0)--D--C,black); draw(A--E--F--G--B,black); dotfactor=4; dot("$A$",A,S); dot("$C$",C,N); dot("$R_1$",E,N); dot("$R_2$",F,S); dot("$R_3$",G,N); dot("$B$",B,S); markscalefactor=0.015; draw(rightanglemark(G,B,D)); draw(anglemark(C,E,A,12)); draw(anglemark(F,E,G,12)); draw(anglemark(E,F,A)); draw(anglemark(E,F,A,12)); draw(anglemark(B,F,G)); draw(anglemark(B,F,G,12)); draw(anglemark(E,G,F)); draw(anglemark(E,G,F,12)); draw(anglemark(E,G,F,16)); draw(anglemark(B,G,D)); draw(anglemark(B,G,D,12)); draw(anglemark(B,G,D,16)); [/asy]$ $\textbf{(A)}\ 6\qquad\textbf{(B)}\ 10\qquad\textbf{(C)}\ 38\qquad\textbf{(D)}\ 98\qquad\textbf{(E)}\ \text{There is no largest value.}$