Difference between revisions of "2021 Fall AMC 10B Problems/Problem 21"
(Created page with "==Problem 21== Regular polygons with <math>5,</math> <math>6,</math> <math>7,</math> and <math>8{ }</math> sides are inscribed in the same circle. No two of the polygons share...") |
|||
Line 6: | Line 6: | ||
==Solution 1== | ==Solution 1== | ||
Imagine we have <math>2</math> regular polygons with <math>m</math> and <math>n</math> sides and <math>m>n</math> inscribed in a circle without sharing a vertex. We see that each side of the polygon with <math>n</math> sides (the polygon with fewer sides) will be intersected twice. | Imagine we have <math>2</math> regular polygons with <math>m</math> and <math>n</math> sides and <math>m>n</math> inscribed in a circle without sharing a vertex. We see that each side of the polygon with <math>n</math> sides (the polygon with fewer sides) will be intersected twice. | ||
+ | (We can see this because to have a vertex of the m-gon on an arc subtended by a side of the n-gon, there will be one intersection to “enter” the arc and one to “exit” the arc. ~KingRavi) | ||
Line 19: | Line 20: | ||
~kingofpineapplz | ~kingofpineapplz | ||
+ | |||
+ | |||
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2021 Fall|ab=B|num-a=22|num-b=20}} | ||
+ | {{MAA Notice}} |
Revision as of 00:57, 23 November 2021
Problem 21
Regular polygons with and sides are inscribed in the same circle. No two of the polygons share a vertex, and no three of their sides intersect at a common point. At how many points inside the circle do two of their sides intersect?
Solution 1
Imagine we have regular polygons with and sides and inscribed in a circle without sharing a vertex. We see that each side of the polygon with sides (the polygon with fewer sides) will be intersected twice. (We can see this because to have a vertex of the m-gon on an arc subtended by a side of the n-gon, there will be one intersection to “enter” the arc and one to “exit” the arc. ~KingRavi)
This means that we will end up with times the number of sides in the polygon with fewer sides.
If we have polygons with and sides, we need to consider each possible pair of polygons and count their intersections.
Throughout 6 of these pairs, the -sided polygon has the least number of sides times, the -sided polygon has the least number of sides times, and the -sided polygon has the least number of sides time.
Therefore the number of intersections is .
~kingofpineapplz
See Also
2021 Fall AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.