Difference between revisions of "2021 Fall AMC 10B Problems/Problem 8"

(Solution 2)
(Tag: Redirect target changed)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
==Problem 8==
+
#REDIRECT [[2021_Fall_AMC_12B_Problems/Problem_6]]
The largest prime factor of <math>16384</math> is <math>2</math>, because <math>16384 = 2^{14}</math>. What is the sum of the digits of the largest prime factor of <math>16383</math>?
 
 
 
<math>\textbf{(A) }3\qquad\textbf{(B) }7\qquad\textbf{(C) }10\qquad\textbf{(D) }16\qquad\textbf{(E) }22</math>
 
 
 
==Solution 1==
 
We have
 
 
 
<cmath>16383=16384-1=2^{14}-1=(2^7+1)(2^7-1)=129\cdot127=3\cdot43\cdot127.</cmath>
 
Since <math>127</math> is prime, our answer is <math>\boxed{\textbf{(C) }10}</math>.
 
 
 
~kingofpineapplz
 
 
 
==Solution 2==
 
Since <math>16384</math> is <math>2^14</math>, we can consider it as <math>(2^7)^2</math>. <math>16383</math> is <math>1</math> less than <math>16384</math>, so it can be considered as <math>1</math> less than a square. Therefore, it can be expressed as <math>(x-1)(x+1)</math>. Since <math>2^7</math> is <math>128, 16383</math> is <math>127 \cdot 129</math>. <math>129</math> is <math>3 \cdot 43</math>, and since <math>127</math> is larger, our answer is <math>\boxed {(C) 10}</math>.
 
 
 
~Arcticturn
 
 
 
==See Also==
 
{{AMC10 box|year=2021 Fall|ab=B|num-a=9|num-b=7}}
 
{{MAA Notice}}
 

Latest revision as of 00:13, 24 November 2021