Difference between revisions of "2021 Fall AMC 12B Problems/Problem 16"
(→Solution) |
(→Solution) |
||
Line 8: | Line 8: | ||
Let <math>\gcd(a,b)=x</math>, <math>\gcd(b,c)=y</math>, <math>\gcd(c,a)=z</math>. WLOG, let <math>x \le y \le z</math>. We can split this off into cases: | Let <math>\gcd(a,b)=x</math>, <math>\gcd(b,c)=y</math>, <math>\gcd(c,a)=z</math>. WLOG, let <math>x \le y \le z</math>. We can split this off into cases: | ||
− | x=1, y=1, z=7: let a = 7A, c=7C, we can try all possibilities of A and C to find that a=7, b=9, c=7 is a solution. | + | <math>x=1,y=1,z=7</math>: let <math>a=7A, c=7C,</math> we can try all possibilities of <math>A</math> and <math>C</math> to find that <math>a=7, b=9, c=7</math> is a solution. |
− | x=1, y=2, z=6: No solutions. By y and z, we know that a, b, and c have to all be even. Therefore, x cannot be equal to 1. | + | <math>x=1,y=2,z=6</math>: No solutions. By <math>y</math> and <math>z</math>, we know that <math>a</math>, <math>b</math>, and <math>c</math> have to all be even. Therefore, <math>x</math> cannot be equal to <math>1</math>. |
− | x=1, y=3, z=5: C has to be both a multiple of 3 and 5. Therefore, c has to be a multiple of 15. The only solution for this is a=5, b=3, c=15. | + | <math>x=1,y=3,z=5</math>: C has to be both a multiple of <math>3</math> and <math>5</math>. Therefore, <math>c</math> has to be a multiple of <math>15</math>. The only solution for this is <math>a=5, b=3, c=15</math>. |
− | x=1, y=4, z=4: No solutions. By y and z, we know that a, b, and c have to all be even. Therefore, x cannot be equal to 1. | + | <math>x=1,y=4,z=4</math>: No solutions. By <math>y</math> and <math>z</math>, we know that <math>a</math>, <math>b</math>, and <math>c</math> have to all be even. Therefore, <math>x</math> cannot be equal to <math>1</math>. |
− | x=2, y=2, z=5: No solutions. By x and y, we know that a, b, and c have to all be even. Therefore, z cannot be equal to 1. | + | <math>x=2,y=2,z=5</math>: No solutions. By <math>x</math> and <math>y</math>, we know that <math>a</math>, <math>b</math>, and <math>c</math> have to all be even. Therefore, <math>z</math> cannot be equal to <math>1</math>. |
− | x=2, y=3, z=4: No solutions. By x and z, we know that a, b, and c have to all be even. Therefore, y cannot be equal to 1. | + | <math>x=2,y=3,z=4</math>: No solutions. By <math>x</math> and <math>z</math>, we know that <math>a</math>, <math>b</math>, and <math>c</math> have to all be even. Therefore, <math>y</math> cannot be equal to <math>1</math>. |
− | x=3, y=3, z=3: No solutions. As a, b, and c have to all be divisible by 3, a+b+c has to be divisible by 3. This contradicts the sum <math>a+b+c=23</math>. | + | <math>x=3,y=3,z=3</math>: No solutions. As <math>a</math>, <math>b</math>, and <math>c</math> have to all be divisible by <math>3</math>, <math>a+b+c</math> has to be divisible by <math>3</math>. This contradicts the sum <math>a+b+c=23</math>. |
Putting these solutions together, we have <math>(7^2+9^2+7^2)+(5^2+3^2+15^2)=179+259=\boxed{\textbf{(B) }438}</math> | Putting these solutions together, we have <math>(7^2+9^2+7^2)+(5^2+3^2+15^2)=179+259=\boxed{\textbf{(B) }438}</math> | ||
+ | |||
+ | -ConcaveTriangle |
Revision as of 16:00, 24 November 2021
Problem
Suppose , , are positive integers such that and What is the sum of all possible distinct values of ?
Solution
Let , , . WLOG, let . We can split this off into cases:
: let we can try all possibilities of and to find that is a solution.
: No solutions. By and , we know that , , and have to all be even. Therefore, cannot be equal to .
: C has to be both a multiple of and . Therefore, has to be a multiple of . The only solution for this is .
: No solutions. By and , we know that , , and have to all be even. Therefore, cannot be equal to .
: No solutions. By and , we know that , , and have to all be even. Therefore, cannot be equal to .
: No solutions. By and , we know that , , and have to all be even. Therefore, cannot be equal to .
: No solutions. As , , and have to all be divisible by , has to be divisible by . This contradicts the sum .
Putting these solutions together, we have
-ConcaveTriangle