Difference between revisions of "2021 Fall AMC 10A Problems/Problem 20"

m
(Tag: New redirect)
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
== Problem ==
+
#REDIRECT [[2021_Fall_AMC_12A_Problems/Problem_17]]
 
 
How many ordered pairs of positive integers <math>(b,c)</math> exist where both <math>x^2+bx+c=0</math> and <math>x^2+cx+b=0</math> do not have distinct, real solutions?
 
 
 
<math>\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 10 \qquad \textbf{(E) } 12 \qquad</math>
 
 
 
== Solution 1 (Casework) ==
 
A quadratic equation does not have real solutions if and only if the discriminant is nonpositive. We conclude that:
 
<ol style="margin-left: 1.5em;">
 
  <li>Since <math>x^2+bx+c=0</math> does not have real solutions, we have <math>b^2\leq 4c.</math></li><p>
 
  <li>Since <math>x^2+cx+b=0</math> does not have real solutions, we have <math>c^2\leq 4b.</math></li><p>
 
</ol>
 
Squaring the first inequality, we get <math>b^4\leq 16c^2.</math> Multiplying the second inequality by <math>16,</math> we get <math>16c^2\leq 64b.</math> Combining these results, we get <cmath>b^4\leq 16c^2\leq 64b.</cmath>
 
We apply casework to the value of <math>b:</math>
 
 
 
* If <math>b=1,</math> then <math>1\leq 16c^2\leq 64,</math> from which <math>c=1,2.</math>
 
 
 
* If <math>b=2,</math> then <math>16\leq 16c^2\leq 128,</math> from which <math>c=1,2.</math>
 
 
 
* If <math>b=3,</math> then <math>81\leq 16c^2\leq 192,</math> from which <math>c=3.</math>
 
 
 
* If <math>b=4,</math> then <math>256\leq 16c^2\leq 256,</math> from which <math>c=4.</math>
 
 
 
Together, there are <math>\boxed{\textbf{(B) } 6}</math> ordered pairs <math>(b,c),</math> namely <math>(1,1),(1,2),(2,1),(2,2),(3,3),</math> and <math>(4,4).</math>
 
 
 
~MRENTHUSIASM
 
 
 
== Solution 2 ==
 
Similarly to Solution 1, use the discriminant to get <math>b^2\leq 4c</math> and <math>c^2\leq 4b</math>. These can be rearranged to <math>c\geq \frac{1}{4}b^2</math> and <math>b\geq \frac{1}{4}c^2</math>. Now, we can roughly graph these two inequalities, letting one of them be the x axis and the other be y. The graph of solutions should look like this:
 
 
 
<asy>
 
unitsize(2);
 
Label f;
 
f.p=fontsize(6);
 
xaxis(0,5,Ticks(f, 1.0));
 
yaxis(0,5,Ticks(f, 1.0));
 
real f(real x)
 
{
 
return 0.25x^2;
 
}
 
real g(real x)
 
{
 
return 2*sqrt(x);
 
}
 
dot((1,1));
 
dot((2,1));
 
dot((1,2));
 
dot((2,2));
 
dot((3,3));
 
dot((4,4));
 
draw(graph(f,0,5));
 
draw(graph(g,0,5));
 
</asy>
 
 
 
We are looking for lattice points(since b and c are positive integers), of which we can count <math>\boxed{\textbf{(B) } 6}</math>.
 
 
 
~aop2014
 
 
 
==Solution 3 (Oversimplified but Risky)==
 
A quadratic equation <math>Ax^2+Bx+C=0</math> has one real solution if and only if <math>\sqrt{B^2-4AC}=0.</math> Similarly, it has imaginary solutions if and only if <math>\sqrt{B^2-4AC}<0.</math> We proceed as following:
 
 
 
We want both <math>x^2+bx+c</math> to be <math>1</math> value or imaginary and <math>x^2+cx+b</math> to be <math>1</math> value or imaginary. <math>x^2+4x+4</math> is one such case since <math>\sqrt {b^2-4ac}</math> is <math>0.</math> Also, <math>x^2+3x+3, x^2+2x+2, x^2+x+1</math> are always imaginary for both <math>b</math> and <math>c.</math> We also have <math>x^2+x+2</math> along with <math>x^2+2x+1</math> since the latter has one solution, while the first one is imaginary. Therefore, we have <math>6</math> total ordered pairs of integers, which is <math>\boxed{\textbf{(B) } 6}.</math>
 
 
 
~Arcticturn
 
 
 
==See Also==
 
{{AMC10 box|year=2021 Fall|ab=A|num-b=19|num-a=21}}
 
{{MAA Notice}}
 

Latest revision as of 01:28, 26 November 2021