Difference between revisions of "1998 IMO Shortlist Problems/A3"
(Created page with "Let <math>x,y.z</math> be positive real numbers such that <math>xyz=1</math>. Prove that <math>\frac{x^3}{(1+y)(1+z)+\frac{y^3}{(1+x)(1+z)}+\fra{z^3}{(1+x)(1+y)}\geq \frac{3}{...") |
|||
Line 1: | Line 1: | ||
Let <math>x,y.z</math> be positive real numbers such that <math>xyz=1</math>. Prove that | Let <math>x,y.z</math> be positive real numbers such that <math>xyz=1</math>. Prove that | ||
− | <math>\frac{x^3}{(1+y)(1+z)+\frac{y^3}{(1+x)(1+z)}+\fra{z^3}{(1+x)(1+y)}\geq \frac{3}{4}</math> | + | <math>\frac{x^3}{(1+y)(1+z)}+\frac{y^3}{(1+x)(1+z)}+\fra{z^3}{(1+x)(1+y)}\geq \frac{3}{4}</math> |
Revision as of 00:29, 19 December 2021
Let be positive real numbers such that . Prove that $\frac{x^3}{(1+y)(1+z)}+\frac{y^3}{(1+x)(1+z)}+\fra{z^3}{(1+x)(1+y)}\geq \frac{3}{4}$ (Error compiling LaTeX. Unknown error_msg)