Difference between revisions of "2021 WSMO Speed Round/Problem 1"
(→Solution (bash)) |
|||
Line 2: | Line 2: | ||
Let <math>f^1(x)=(x-1)^2</math>, and let <math>f^n(x)=f^1(f^{n-1}(x))</math>. Find the value of <math>|f^7(2)|</math>. | Let <math>f^1(x)=(x-1)^2</math>, and let <math>f^n(x)=f^1(f^{n-1}(x))</math>. Find the value of <math>|f^7(2)|</math>. | ||
− | ==Solution | + | <math>\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24</math> |
+ | |||
+ | ==Solution 1== | ||
Note that | Note that | ||
<cmath>|f^7(2)|=f(f(f(f(f(f(f(2)))))))=f(f(f(f(f(f((2-1)^2))))))=f(f(f(f(f(f(1))))))</cmath> | <cmath>|f^7(2)|=f(f(f(f(f(f(f(2)))))))=f(f(f(f(f(f((2-1)^2))))))=f(f(f(f(f(f(1))))))</cmath> | ||
<cmath>=f(f(f(f(f((1-1)^2)))))=f(f(f(f(f(0)))))=f(f(f(f((0-1)^2))))=f(f(f(f(1))))=f(f(f((1-1)^2)))</cmath> | <cmath>=f(f(f(f(f((1-1)^2)))))=f(f(f(f(f(0)))))=f(f(f(f((0-1)^2))))=f(f(f(f(1))))=f(f(f((1-1)^2)))</cmath> | ||
<cmath>=f(f(f(0)))=f(f((0-1)^2))=f(f(1))=f((1-1)^2)=f(0)=(0-1)^2=\boxed{1}.</cmath> | <cmath>=f(f(f(0)))=f(f((0-1)^2))=f(f(1))=f((1-1)^2)=f(0)=(0-1)^2=\boxed{1}.</cmath> | ||
+ | |||
+ | ~pinkpig |
Revision as of 16:39, 22 December 2021
Problem
Let , and let . Find the value of .
Solution 1
Note that
~pinkpig