Difference between revisions of "2021 WSMO Speed Round/Problem 1"

(Solution (bash))
Line 2: Line 2:
 
Let <math>f^1(x)=(x-1)^2</math>, and let <math>f^n(x)=f^1(f^{n-1}(x))</math>. Find the value of <math>|f^7(2)|</math>.
 
Let <math>f^1(x)=(x-1)^2</math>, and let <math>f^n(x)=f^1(f^{n-1}(x))</math>. Find the value of <math>|f^7(2)|</math>.
  
==Solution (bash)==
+
<math>\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24</math>
 +
 
 +
==Solution 1==
 
Note that  
 
Note that  
 
<cmath>|f^7(2)|=f(f(f(f(f(f(f(2)))))))=f(f(f(f(f(f((2-1)^2))))))=f(f(f(f(f(f(1))))))</cmath>
 
<cmath>|f^7(2)|=f(f(f(f(f(f(f(2)))))))=f(f(f(f(f(f((2-1)^2))))))=f(f(f(f(f(f(1))))))</cmath>
 
<cmath>=f(f(f(f(f((1-1)^2)))))=f(f(f(f(f(0)))))=f(f(f(f((0-1)^2))))=f(f(f(f(1))))=f(f(f((1-1)^2)))</cmath>
 
<cmath>=f(f(f(f(f((1-1)^2)))))=f(f(f(f(f(0)))))=f(f(f(f((0-1)^2))))=f(f(f(f(1))))=f(f(f((1-1)^2)))</cmath>
 
<cmath>=f(f(f(0)))=f(f((0-1)^2))=f(f(1))=f((1-1)^2)=f(0)=(0-1)^2=\boxed{1}.</cmath>
 
<cmath>=f(f(f(0)))=f(f((0-1)^2))=f(f(1))=f((1-1)^2)=f(0)=(0-1)^2=\boxed{1}.</cmath>
 +
 +
~pinkpig

Revision as of 16:39, 22 December 2021

Problem

Let $f^1(x)=(x-1)^2$, and let $f^n(x)=f^1(f^{n-1}(x))$. Find the value of $|f^7(2)|$.

$\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$

Solution 1

Note that \[|f^7(2)|=f(f(f(f(f(f(f(2)))))))=f(f(f(f(f(f((2-1)^2))))))=f(f(f(f(f(f(1))))))\] \[=f(f(f(f(f((1-1)^2)))))=f(f(f(f(f(0)))))=f(f(f(f((0-1)^2))))=f(f(f(f(1))))=f(f(f((1-1)^2)))\] \[=f(f(f(0)))=f(f((0-1)^2))=f(f(1))=f((1-1)^2)=f(0)=(0-1)^2=\boxed{1}.\]

~pinkpig