Difference between revisions of "2021 WSMO Speed Round Problems/Problem 7"
(Created page with "==Problem== Consider triangle <math>ABC</math> with side lengths <math>AB=13,AC=14,BC=15</math> and incircle <math>\omega</math>. A second circle <math>\omega_2</math> is draw...") |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
Note that the length of the <math>A</math>-angle bisector is <math>\frac{\sqrt{(b+c-a)(b+c+a)bc}}{b+c}.</math> Now, let <math>I</math> be the incenter of triangle <math>ABC.</math> This means that <cmath>AI=\frac{b+c}{a+b+c}\cdot\frac{\sqrt{b+c-a}(b+c+a)bc}{b+c}=\frac{\sqrt{(b+c-a)(b+c+a)bc}}{a+b+c}=\frac{\sqrt{12\cdot42\cdot13\cdot14}}{42}=2\sqrt{13}.</cmath> Now, from Heron's formula, we find that the area of triangle <math>ABC</math> is <cmath>\sqrt{\left(\frac{\left(13+14+15\right)}{2}\right)\left(\frac{\left(13+14+15\right)}{2}-13\right)\left(\frac{\left(13+14+15\right)}{2}-14\right)\left(\frac{\left(13+14+15\right)}{2}-15\right)}=\sqrt{21\cdot6\cdot7\cdot8}=84.</cmath> Since the area of a triangle is the product of the semi-perimeter and the inradius, we find that the length of the inradius of triangle <math>ABC</math> is <math>\frac{84}{\frac{13+14+15}{2}}=\frac{84}{21}=4.</math> Now, let the radius of <math>\omega_2</math> be <math>r.</math> From similar triangles, we find that <cmath>\frac{r}{4}=\frac{2\sqrt{13}-4-r}{2\sqrt{13}}\Leftrightarrow r=\frac{4(2\sqrt{13}-4)}{2\sqrt{13}+4}=\frac{4(2\sqrt{13}-4)^2}{(2\sqrt{13}-4)(2\sqrt{13}+4)}=\frac{4(68-16\sqrt13)}{(2\sqrt{13})^2-4^2}=\frac{4(68-16\sqrt{13})}{36}=\frac{68-16\sqrt{13}}{9}\Longrightarrow68+16+13+9=\boxed{106}.</cmath> | Note that the length of the <math>A</math>-angle bisector is <math>\frac{\sqrt{(b+c-a)(b+c+a)bc}}{b+c}.</math> Now, let <math>I</math> be the incenter of triangle <math>ABC.</math> This means that <cmath>AI=\frac{b+c}{a+b+c}\cdot\frac{\sqrt{b+c-a}(b+c+a)bc}{b+c}=\frac{\sqrt{(b+c-a)(b+c+a)bc}}{a+b+c}=\frac{\sqrt{12\cdot42\cdot13\cdot14}}{42}=2\sqrt{13}.</cmath> Now, from Heron's formula, we find that the area of triangle <math>ABC</math> is <cmath>\sqrt{\left(\frac{\left(13+14+15\right)}{2}\right)\left(\frac{\left(13+14+15\right)}{2}-13\right)\left(\frac{\left(13+14+15\right)}{2}-14\right)\left(\frac{\left(13+14+15\right)}{2}-15\right)}=\sqrt{21\cdot6\cdot7\cdot8}=84.</cmath> Since the area of a triangle is the product of the semi-perimeter and the inradius, we find that the length of the inradius of triangle <math>ABC</math> is <math>\frac{84}{\frac{13+14+15}{2}}=\frac{84}{21}=4.</math> Now, let the radius of <math>\omega_2</math> be <math>r.</math> From similar triangles, we find that <cmath>\frac{r}{4}=\frac{2\sqrt{13}-4-r}{2\sqrt{13}}\Leftrightarrow r=\frac{4(2\sqrt{13}-4)}{2\sqrt{13}+4}=\frac{4(2\sqrt{13}-4)^2}{(2\sqrt{13}-4)(2\sqrt{13}+4)}=\frac{4(68-16\sqrt13)}{(2\sqrt{13})^2-4^2}=\frac{4(68-16\sqrt{13})}{36}=\frac{68-16\sqrt{13}}{9}\Longrightarrow68+16+13+9=\boxed{106}.</cmath> | ||
+ | |||
+ | ~pinkpig |
Latest revision as of 10:59, 23 December 2021
Problem
Consider triangle with side lengths and incircle . A second circle is drawn which is tangent to and externally tangent to . The radius of can be expressed as , where and is not divisible by the square of any prime. Find .
Solution
Note that the length of the -angle bisector is Now, let be the incenter of triangle This means that Now, from Heron's formula, we find that the area of triangle is Since the area of a triangle is the product of the semi-perimeter and the inradius, we find that the length of the inradius of triangle is Now, let the radius of be From similar triangles, we find that
~pinkpig