Difference between revisions of "Dot product"

(created page (please expand))
 
 
Line 1: Line 1:
 
In [[linear algebra]], the dot product of two vectors <math>\vec{v} = (v_1, \cdots, v_n), \vec{w} = (w_1, \cdots, w_n)</math> is defined to be <math>\vec{v}\cdot\vec{w} = \sum_{i=1}^n v_i w_i</math>. The dot product is [[linear|bilinear]].
 
In [[linear algebra]], the dot product of two vectors <math>\vec{v} = (v_1, \cdots, v_n), \vec{w} = (w_1, \cdots, w_n)</math> is defined to be <math>\vec{v}\cdot\vec{w} = \sum_{i=1}^n v_i w_i</math>. The dot product is [[linear|bilinear]].
  
[[Category:Linear algebra]]{{stub}}
+
For two vectors <math>\vec{v}</math> and <math>\vec{w}</math>, we also have <math>\vec{v} \cdot \vec{w} = \left \Vert \vec{v} \right \Vert \left \Vert \vec{w} \right \Vert \cos \theta</math>, where <math>\theta</math> is the angle that <math>\vec{v}</math> and <math>\vec{w}</math> form with each other. In particular, for nonzero vectors <math>\vec{v}</math> and <math>\vec{w}</math>, we have <math>\vec{v} \cdot \vec{w} = 0</math> if and only if <math>\vec{v}</math> and <math>\vec{w}</math> are perpendicular, and <math>\vec{v} \cdot \vec{w} = \left \Vert \vec{v} \right \Vert \left \Vert \vec{w} \right \Vert</math> if and only if <math>\vec{v}</math> and <math>\vec{w}</math> are parallel, from which the identity <math>\vec{v} \cdot \vec{v} = \left \Vert \vec{v} \right \Vert ^2</math> follows.
 +
 
 +
[[Category:Linear algebra]]
 +
 
 +
{{stub}}

Latest revision as of 22:10, 19 February 2022

In linear algebra, the dot product of two vectors $\vec{v} = (v_1, \cdots, v_n), \vec{w} = (w_1, \cdots, w_n)$ is defined to be $\vec{v}\cdot\vec{w} = \sum_{i=1}^n v_i w_i$. The dot product is bilinear.

For two vectors $\vec{v}$ and $\vec{w}$, we also have $\vec{v} \cdot \vec{w} = \left \Vert \vec{v} \right \Vert \left \Vert \vec{w} \right \Vert \cos \theta$, where $\theta$ is the angle that $\vec{v}$ and $\vec{w}$ form with each other. In particular, for nonzero vectors $\vec{v}$ and $\vec{w}$, we have $\vec{v} \cdot \vec{w} = 0$ if and only if $\vec{v}$ and $\vec{w}$ are perpendicular, and $\vec{v} \cdot \vec{w} = \left \Vert \vec{v} \right \Vert \left \Vert \vec{w} \right \Vert$ if and only if $\vec{v}$ and $\vec{w}$ are parallel, from which the identity $\vec{v} \cdot \vec{v} = \left \Vert \vec{v} \right \Vert ^2$ follows.

This article is a stub. Help us out by expanding it.