Difference between revisions of "2007 AMC 10B Problems/Problem 2"
(Created page with '==Problem 2== Define the operation <math>\star</math> by <math>a \star b = (a+b)b.</math> What is <math>(3 \star 5) - (5 \star 3)?</math> <math>\textbf{(A) } -16 \qquad\textbf{…') |
Mathfun1000 (talk | contribs) m |
||
(9 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
Define the operation <math>\star</math> by <math>a \star b = (a+b)b.</math> What is <math>(3 \star 5) - (5 \star 3)?</math> | Define the operation <math>\star</math> by <math>a \star b = (a+b)b.</math> What is <math>(3 \star 5) - (5 \star 3)?</math> | ||
Line 5: | Line 5: | ||
<math>\textbf{(A) } -16 \qquad\textbf{(B) } -8 \qquad\textbf{(C) } 0 \qquad\textbf{(D) } 8 \qquad\textbf{(E) } 16</math> | <math>\textbf{(A) } -16 \qquad\textbf{(B) } -8 \qquad\textbf{(C) } 0 \qquad\textbf{(D) } 8 \qquad\textbf{(E) } 16</math> | ||
− | ==Solution== | + | ==Solution 1== |
Substitute and simplify. | Substitute and simplify. | ||
− | <cmath>(3+5)5 - (5+3)3 = (3+5)2 = ( | + | <cmath>(3+5)5 - (5+3)3 = (3+5)2 = 8\cdot2 = \boxed{\textbf{(E) }16}</cmath> |
+ | |||
+ | ==Solution 2== | ||
+ | Note that | ||
+ | <math>(a \star b) - (b \star a) = (a+b)b - (b+a)a= (a+b)(b-a)= b^2 - a^2</math>. We can substitute <math>a=3</math> and <math>b=5</math> to get <math>5^2 - 3^2 = \boxed{\textbf{(E) }16}</math>. | ||
+ | |||
+ | ~MathFun1000 (Minor Edits) | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AMC10 box|year=2007|ab=B|num-b=1|num-a=3}} | ||
+ | {{MAA Notice}} |
Latest revision as of 09:33, 7 March 2022
Contents
[hide]Problem
Define the operation by What is
Solution 1
Substitute and simplify.
Solution 2
Note that . We can substitute and to get .
~MathFun1000 (Minor Edits)
See Also
2007 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.