Difference between revisions of "Chebyshev's Inequality"

m
 
(5 intermediate revisions by 5 users not shown)
Line 12: Line 12:
 
Now, by adding the inequalities:
 
Now, by adding the inequalities:
  
<math>\sum_{i=1}^{n}a_ib_i\geq a_1b_1+a_2b_2+...+a_n b_{n}</math>,
+
<math>\sum_{i=1}^{n}a_ib_i\geq a_1b_1+a_2b_2+...+a_n b_{n}</math>
  
<math>\sum_{i=1}^{n}a_ib_i\geq a_1b_2+a_2b_3+...+a_nb_1</math>,
+
<math>\sum_{i=1}^{n}a_ib_i\geq a_1b_2+a_2b_3+...+a_nb_1</math>
  
...
+
<math>\cdots</math>
  
 
<math>\sum_{i=1}^{n}a_ib_i\geq a_1b_n+a_2b_1+...+a_nb_{n-1}</math>
 
<math>\sum_{i=1}^{n}a_ib_i\geq a_1b_n+a_2b_1+...+a_nb_{n-1}</math>
Line 22: Line 22:
 
we get the initial inequality.
 
we get the initial inequality.
  
[[Category:Definition]]
+
[[Category:Algebra]]
[[Category:Number Theory]]
+
[[Category:Inequalities]]
[[Category:Inequality]]
 

Latest revision as of 19:32, 13 March 2022

Chebyshev's inequality, named after Pafnuty Chebyshev, states that if $a_1\geq a_2\geq ... \geq a_n$ and $b_1\geq b_2\geq ... \geq b_n$ then the following inequality holds:

$n \left(\sum_{i=1}^{n}a_ib_i\right)\geq\left(\sum_{i=1}^{n}a_i\right)\left(\sum_{i=1}^{n}b_i\right)$.

On the other hand, if $a_1\geq a_2\geq ... \geq a_n$ and $b_n\geq b_{n-1}\geq ... \geq b_1$ then: $n \left(\sum_{i=1}^{n}a_ib_i\right)\leq\left(\sum_{i=1}^{n}a_i\right)\left(\sum_{i=1}^{n}b_i\right)$.

Proof

Chebyshev's inequality is a consequence of the Rearrangement inequality, which gives us that the sum $S=a_1b_{i_1}+a_2b_{i_2}+...+a_nb_{i_n}$ is maximal when $i_k=k$.

Now, by adding the inequalities:

$\sum_{i=1}^{n}a_ib_i\geq a_1b_1+a_2b_2+...+a_n b_{n}$

$\sum_{i=1}^{n}a_ib_i\geq a_1b_2+a_2b_3+...+a_nb_1$

$\cdots$

$\sum_{i=1}^{n}a_ib_i\geq a_1b_n+a_2b_1+...+a_nb_{n-1}$

we get the initial inequality.