Difference between revisions of "G285 MC10B Problems/Problem 1"

(Created page with "==Solution== {{AMC12 box|year=2007|ab=A|num-b=24|after=Last question}} Category:Intermediate Combinatorics Problems {{MAA Notice}}")
 
m (Remove nonexistent template)
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
==Problem==
 +
Find <math>\left \lceil {\frac{3!+4!+5!+6!}{2+3+4+5+6}} \right \rceil</math>
 +
 +
<math>\textbf{(A)}\ 42\qquad\textbf{(B)}\ 43\qquad\textbf{(C)}\ 44\qquad\textbf{(D)}\ 45\qquad\textbf{(E)}\ 46</math>
 +
 
==Solution==
 
==Solution==
 
+
We have <cmath>\frac{6+24+120+720}{20} = \frac{87}{2} = \lceil 43.5 \rceil \implies \boxed{\textbf{(C)}\ 44}</cmath>
{{AMC12 box|year=2007|ab=A|num-b=24|after=Last question}}
 
[[Category:Intermediate Combinatorics Problems]]
 
{{MAA Notice}}
 

Latest revision as of 22:57, 3 June 2022

Problem

Find $\left \lceil {\frac{3!+4!+5!+6!}{2+3+4+5+6}} \right \rceil$

$\textbf{(A)}\ 42\qquad\textbf{(B)}\ 43\qquad\textbf{(C)}\ 44\qquad\textbf{(D)}\ 45\qquad\textbf{(E)}\ 46$

Solution

We have \[\frac{6+24+120+720}{20} = \frac{87}{2} = \lceil 43.5 \rceil \implies \boxed{\textbf{(C)}\ 44}\]