Difference between revisions of "Carmichael number"

m (See Also)
Line 1: Line 1:
 
==Carmichael numbers==
 
==Carmichael numbers==
  
A [[Carmichael number]] is a [[composite number]]s that satisfies [[Fermat's Little Theorem]]. The smallest Carmichael number is <math>561.</math>
+
A [[Carmichael number]] is a [[composite number]]s that satisfies [[Fermat's Little Theorem]], <math>a^p \equiv a \pmod{p}.</math>or <math>a^{p - 1} \equiv 1 \pmod{p}.</math> In this case, <math>p</math> is the Carmichael number.
 +
 
 +
The first <math>7</math> are:
 +
 
 +
\begin{align*}
 +
561 = & 3 \cdot 11 \cdot 17 \\
 +
1105 = & 5 \cdot 13 \cdot 17 \\
 +
1729 = & 7 \cdot 13 \cdot 19 \\
 +
2465 = & 5 \cdot 17 \cdot 29 \\
 +
2821 = & 7 \cdot 13 \cdot 31 \\
 +
6601 = & 7 \cdot 23 \cdot 41 \\
 +
8991 = & 7 \cdot 19 \cdot 67
 +
\end{align*}
  
 
==See Also==
 
==See Also==

Revision as of 11:25, 2 August 2022

Carmichael numbers

A Carmichael number is a composite numbers that satisfies Fermat's Little Theorem, $a^p \equiv a \pmod{p}.$or $a^{p - 1} \equiv 1 \pmod{p}.$ In this case, $p$ is the Carmichael number.

The first $7$ are:

\begin{align*} 561 = & 3 \cdot 11 \cdot 17 \\ 1105 = & 5 \cdot 13 \cdot 17 \\ 1729 = & 7 \cdot 13 \cdot 19 \\ 2465 = & 5 \cdot 17 \cdot 29 \\ 2821 = & 7 \cdot 13 \cdot 31 \\ 6601 = & 7 \cdot 23 \cdot 41 \\ 8991 = & 7 \cdot 19 \cdot 67 \end{align*}

See Also

~ User:Enderramsby


This article is a stub. Help us out by expanding it.