Difference between revisions of "Linear congruence"

m (Solution 1)
m
 
(2 intermediate revisions by 2 users not shown)
Line 13: Line 13:
  
 
===Solution 1===
 
===Solution 1===
<math>7\equiv15\pmod8</math>, so <math>5x\equiv15\pmod8</math>. Thus, <math>x\equiv3\pmod 8</math>. Note that we can divide by <math>5</math> because <math>5</math> and <math>8</math> are relatively prime. <math>/square</math>
+
<math>7\equiv15\pmod8</math>, so <math>5x\equiv15\pmod8</math>. Thus, <math>x\equiv3\pmod 8</math>. Note that we can divide by <math>5</math> because <math>5</math> and <math>8</math> are relatively prime.
  
 
===Solution 2===
 
===Solution 2===
 
Multiply both sides of the congruence by <math>5</math> to get <math>25x\equiv35\pmod8</math>. Since <math>25\equiv1\pmod8</math> and <math>35\equiv3\pmod8</math>, <math>x\equiv3\pmod8</math>.
 
Multiply both sides of the congruence by <math>5</math> to get <math>25x\equiv35\pmod8</math>. Since <math>25\equiv1\pmod8</math> and <math>35\equiv3\pmod8</math>, <math>x\equiv3\pmod8</math>.
  
[[Category:Algebra]]
+
[[Category:Number theory]]

Latest revision as of 14:52, 3 August 2022

A Linear Congruence is a congruence mod p of the form \[ax+b\equiv c\pmod{p}\] where $a$, $b$, $c$, and $p$ are constants and $x$ is the variable to be solved for.

Solving

Note that not every linear congruence has a solution. For instance, the congruence equation $2x\equiv3\pmod8$ has no solutions. A solution is guaranteed iff $a$ is relatively prime to $p$. If $a$ and $p$ are not relatively prime, let their greatest common divisor be $d$; then:

  • if $d$ divides $b$, there will be a solution $\pmod{\frac{p}{d}}$
  • if $d$ does not divide $b$, there will be no solution

Example

Problem

Given $5x\equiv7\pmod8$, find $x$.

Solution 1

$7\equiv15\pmod8$, so $5x\equiv15\pmod8$. Thus, $x\equiv3\pmod 8$. Note that we can divide by $5$ because $5$ and $8$ are relatively prime.

Solution 2

Multiply both sides of the congruence by $5$ to get $25x\equiv35\pmod8$. Since $25\equiv1\pmod8$ and $35\equiv3\pmod8$, $x\equiv3\pmod8$.