Difference between revisions of "2018 IMO Problems/Problem 2"
(→Solution) |
(→Solution) |
||
Line 18: | Line 18: | ||
Let <math>n = 3k, k={1,2,...}.</math> | Let <math>n = 3k, k={1,2,...}.</math> | ||
Real numbers <math>a_1 =a_4 =...=2, a_2 = a_3 = a_5=...=-1</math> satisfying <math>a_{n+1} = a_1, a_{n+2} = a_2</math> and <math>a_{i}a_{i+1} + 1 = a_{i+2}</math>. | Real numbers <math>a_1 =a_4 =...=2, a_2 = a_3 = a_5=...=-1</math> satisfying <math>a_{n+1} = a_1, a_{n+2} = a_2</math> and <math>a_{i}a_{i+1} + 1 = a_{i+2}</math>. | ||
+ | |||
+ | <i><b>Case 2</b></i> | ||
+ | |||
+ | Let <math>n = 4.</math> We get system of equations | ||
+ | <cmath> | ||
+ | We multiply each equation by the number on the right-hand side and get: | ||
+ | <cmath> | ||
+ | We multiply each equation by a number that precedes a pair of product numbers in a given sequence <math>a_1, a_2, a_3, a_4, a_1, a_2.</math> So we multiply the equation with product <math>a_1 a_2</math> by <math>a_4</math>, we multiply the equation with product <math>a_4 a_1</math> by <math>a_3</math> etc. We get: |
Revision as of 01:21, 16 August 2022
Find all numbers for which there exists real numbers satisfying and for
Solution
We find at least one series of real numbers for for each and we prove that if then the series does not exist.
Case 1
Let We get system of equations
We subtract the first equation from the second and get: So
Case 1'
Let Real numbers satisfying and .
Case 2
Let We get system of equations We multiply each equation by the number on the right-hand side and get: We multiply each equation by a number that precedes a pair of product numbers in a given sequence So we multiply the equation with product by , we multiply the equation with product by etc. We get: