Difference between revisions of "Euler-Mascheroni constant"
(Transferred contents of "Euler-Mascheroni Constant" here; that page will become a redirect to this page.) |
m (Fixed an off-by-one error.) |
||
(One intermediate revision by the same user not shown) | |||
Line 6: | Line 6: | ||
===Alternate formulation of the limit=== | ===Alternate formulation of the limit=== | ||
− | The tangent-line approximation (first-degree [[Taylor polynomial]]) of <math>\ln(k + 1)</math> about <math>x = k</math> is <cmath>\ln(k + 1) = \ln(k) + ((k + 1) - k)\ln'(k) + E_k</cmath> for some error term <math>E_k</math>. Using <math>\ln'(x) = \frac{1}{x}</math> and simplifying, <cmath>\ln(k + 1) = \ln(k) + \frac{1}{k} + E_k.</cmath> Applying the tangent-line formula [[Recursion|recursively]] for all <math>k</math> descending from <math>n</math> to <math>1</math>, | + | The tangent-line approximation (first-degree [[Taylor polynomial]]) of <math>\ln(k + 1)</math> about <math>x = k</math> is <cmath>\ln(k + 1) = \ln(k) + ((k + 1) - k)\ln'(k) + E_k</cmath> for some error term <math>E_k</math>. Using <math>\ln'(x) = \frac{1}{x}</math> and simplifying, <cmath>\ln(k + 1) = \ln(k) + \frac{1}{k} + E_k.</cmath> Applying the tangent-line formula [[Recursion|recursively]] for all <math>k</math> descending from <math>n - 1</math> to <math>1</math>, |
<cmath>\begin{align*} \ln(n) &= \ln(n-1) + \frac{1}{n-1} + E_{n-1} \\ &= \left( \ln (n-2) + \frac{1}{n-2} + E_{n-2} \right) + \frac{1}{n - 1} + E_{n-1} \\ &= \dots \\ &= \ln(1) + \left( \sum_{k=1}^{n-1} \frac{1}{k} \right) + \left( \sum_{k=1}^{n-1} E_k \right) . \end{align*}</cmath> | <cmath>\begin{align*} \ln(n) &= \ln(n-1) + \frac{1}{n-1} + E_{n-1} \\ &= \left( \ln (n-2) + \frac{1}{n-2} + E_{n-2} \right) + \frac{1}{n - 1} + E_{n-1} \\ &= \dots \\ &= \ln(1) + \left( \sum_{k=1}^{n-1} \frac{1}{k} \right) + \left( \sum_{k=1}^{n-1} E_k \right) . \end{align*}</cmath> | ||
Line 24: | Line 24: | ||
Hence, <math>\gamma = - \sum_{k=1}^{\infty} E_k</math> is a defined constant. | Hence, <math>\gamma = - \sum_{k=1}^{\infty} E_k</math> is a defined constant. | ||
+ | |||
+ | ==See also== | ||
+ | *[[Harmonic series]] | ||
+ | *[[Natural logarithm]] | ||
[[Category: Constants]] | [[Category: Constants]] |
Latest revision as of 16:32, 19 September 2022
The Euler-Mascheroni constant is a constant defined by the limit Its value is approximately
Whether is rational or irrational and (if irrational) algebraic or transcendental is an open question.
Contents
Proof of existence
Alternate formulation of the limit
The tangent-line approximation (first-degree Taylor polynomial) of about is for some error term . Using and simplifying, Applying the tangent-line formula recursively for all descending from to ,
Because , we may rearrange to Adding to both sides yields Taking the limit as goes to infinity of both sides,
Thus, .
Convergence of the sum of error terms
We have . For , the maximum absolute value of for is . Therefore, by the Lagrange Error Bound,
The series famously converges to by the Basel problem, so converges to and converges to .
Because for all , the Series Comparison Test gives that must converge to a value in .
Hence, is a defined constant.