Difference between revisions of "User:Temperal/The Problem Solver's Resource9"
(→Definition) |
(trig) |
||
Line 20: | Line 20: | ||
*<math>\frac{df(x)\cdot g(x)}{dx}=f'(x)\cdot g(x)+ g'(x)\cdot f(x)</math> | *<math>\frac{df(x)\cdot g(x)}{dx}=f'(x)\cdot g(x)+ g'(x)\cdot f(x)</math> | ||
*<math>\frac{d\frac{f(x)}{g(x)}}{dx}=\frac{f'(x)g(x)-g'(x)f(x)}{g^2(x)}</math> | *<math>\frac{d\frac{f(x)}{g(x)}}{dx}=\frac{f'(x)g(x)-g'(x)f(x)}{g^2(x)}</math> | ||
+ | *<math>\frac{d\sin x}{dx}=\cos x</math> | ||
+ | *<math>\frac{d\cos x}{dx}=-\sin x</math> | ||
+ | *<math>\frac{d\tan x}{dx}=\sec^2 x</math> | ||
+ | *<math>\frac{d\csc x}{dx}=-\csc x\cot x</math> | ||
+ | *<math>\frac{d\cot x}{dx}=-\csc^2 x</math> | ||
====The Power Rule==== | ====The Power Rule==== | ||
*<math>\frac{dx^n}{dx}=nx^{n-1}</math> | *<math>\frac{dx^n}{dx}=nx^{n-1}</math> |
Revision as of 15:42, 13 October 2007
DerivativesThis page will cover derivatives and their applications, as well as some advanced limits. The Fundamental Theorem of Calculus is covered on the integral page. Definition
Basic FactsThe Power RuleRolle's TheoremIf Extension: Mean Value TheoremIf L'Hopital's Rule
Note that this inplies that Taylor's FormulaLet
where Applications
|