|
|
Line 1: |
Line 1: |
− | ==Problem==
| |
− | A donkey suffers an attack of hiccups and the first hiccup happens at <math>4:00</math> one afternoon. Suppose that
| |
− | the donkey hiccups regularly every <math>5</math> seconds. At what time does the donkey’s <math>700</math>th hiccup occur?
| |
| | | |
− | <math>\textbf{(A) }15 \text{ seconds after } 4:58</math>
| |
− |
| |
− | <math>\textbf{(B) }20 \text{ seconds after } 4:58</math>
| |
− |
| |
− | <math>\textbf{(C) }25 \text{ seconds after } 4:58</math>
| |
− |
| |
− | <math>\textbf{(D) }30 \text{ seconds after } 4:58</math>
| |
− |
| |
− | <math>\textbf{(E) }35 \text{ seconds after } 4:58</math>
| |
− |
| |
− | ==Solution==
| |
− |
| |
− | Since the donkey hiccupped the 1st hiccup at <math>4:00</math>, he hiccupped for <math>5 \cdot (700-1) = 3495</math> seconds, which is <math>58</math> minutes and <math>15</math> seconds, so the answer is <math>\boxed{\textbf{(A) }15 \text{ seconds after } 4:58}</math>.
| |
− |
| |
− | ~MrThinker
| |
− |
| |
− | == See Also ==
| |
− | {{AMC10 box|year=2022|ab=B|num-b=7|num-a=3}}
| |
− | {{AMC12 box|year=2022|ab=B|num-b=5|num-a=5}}
| |
− | {{MAA Notice}}
| |