Difference between revisions of "2022 AMC 12B Problems"
(→Problem 4) |
(→Problem 5) |
||
Line 55: | Line 55: | ||
==Problem 5 == | ==Problem 5 == | ||
− | + | The point <math>(-1, -2)</math> is rotated <math>270^{\circ}</math> counterclockwise about the point <math>(3, 1)</math>. What are the coordinates of its new position? | |
+ | <math>\textbf{(A)}\ (-3, -4) \qquad \textbf{(B)}\ (0,5) \qquad \textbf{(C)}\ (2,-1) \qquad \textbf{(D)}\ (4,3) \qquad \textbf{(E)}\ (6,-3)</math> | ||
[[2022 AMC 12B Problems/Problem 5|Solution]] | [[2022 AMC 12B Problems/Problem 5|Solution]] | ||
Revision as of 15:35, 17 November 2022
2022 AMC 12B (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
Problem 1
Define to be for all real numbers and . What is the value of
Problem 2
In rhombus , point lies on segment such that , , and . What is the area of ?
[asy] import olympiad; size(180); real r = 3, s = 5, t = sqrt(r*r+s*s); defaultpen(linewidth(0.6) + fontsize(10)); pair A = (0,0), B = (r,s), C = (r+t,s), D = (t,0), P = (r,0); draw(A--B--C--D--A^^B--P^^rightanglemark(B,P,D)); label("",A,SW); label("", B, NW); label("",C,NE); label("",D,SE); label("",P,S); [/asy]
Problem 3
How many of the first ten numbers of the sequence , , , ... are prime numbers?
Problem 4
For how many values of the constant will the polynomial have two distinct integer roots?
Problem 5
The point is rotated counterclockwise about the point . What are the coordinates of its new position?
Problem 6
XXX
Problem 7
XXX
Problem 8
XXX
Problem 9
XXX
Problem 10
XXX
Problem 11
XXX
Problem 12
XXX
Problem 13
XXX
Problem 14
XXX
Problem 15
XXX
Problem 16
XXX
Problem 17
XXX
Problem 18
XXX
Problem 19
XXX
Problem 20
XXX
Problem 21
XXX
Problem 22
XXX
Problem 23
XXX
Problem 24
XXX
Problem 25
XXX