Difference between revisions of "2022 AMC 10A Problems/Problem 13"
Eashanshetty (talk | contribs) (→Video Solution by OmegaLearn) |
MRENTHUSIASM (talk | contribs) m (→Solution (Generalization)) |
||
Line 39: | Line 39: | ||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
− | ==Solution (Generalization)== | + | ==Solution 1 (Generalization)== |
Suppose that <math>\overline{BD}</math> intersect <math>\overline{AP}</math> and <math>\overline{AC}</math> at <math>X</math> and <math>Y,</math> respectively. By Angle-Side-Angle, we conclude that <math>\triangle ABX\cong\triangle AYX.</math> | Suppose that <math>\overline{BD}</math> intersect <math>\overline{AP}</math> and <math>\overline{AC}</math> at <math>X</math> and <math>Y,</math> respectively. By Angle-Side-Angle, we conclude that <math>\triangle ABX\cong\triangle AYX.</math> | ||
Line 45: | Line 45: | ||
Let <math>AB=AY=2x.</math> By the Angle Bisector Theorem, we have <math>AC=3x,</math> or <math>YC=x.</math> | Let <math>AB=AY=2x.</math> By the Angle Bisector Theorem, we have <math>AC=3x,</math> or <math>YC=x.</math> | ||
− | By | + | By alternate interior angles, we get <math>\angle YAD=\angle YCB</math> and <math>\angle YDA=\angle YBC.</math> Note that <math>\triangle ADY \sim \triangle CBY</math> by the Angle-Angle Similarity, with the ratio of similitude <math>\frac{AY}{CY}=2.</math> It follows that <math>AD=2CB=2(BP+PC)=\boxed{\textbf{(C) } 10}.</math> |
~MRENTHUSIASM | ~MRENTHUSIASM |
Revision as of 23:30, 19 November 2022
Contents
Problem
Let be a scalene triangle. Point lies on so that bisects The line through perpendicular to intersects the line through parallel to at point Suppose and What is
Diagram
~MRENTHUSIASM
Solution 1 (Generalization)
Suppose that intersect and at and respectively. By Angle-Side-Angle, we conclude that
Let By the Angle Bisector Theorem, we have or
By alternate interior angles, we get and Note that by the Angle-Angle Similarity, with the ratio of similitude It follows that
~MRENTHUSIASM
Solution 2 (Assumption)
Since there is only one possible value of , we assume . By the angle bisector theorem, , so and . Now observe that . Let the intersection of and be . Then . Consequently, and therefore , so , and we're done!
Video Solution 1
- Whiz
Video Solution by OmegaLearn
~ pi_is_3.14
Video Solution (Quick and Simple)
~Education, the Study of Everything
See Also
2022 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.