Difference between revisions of "2022 AMC 12B Problems/Problem 14"
Mathboy100 (talk | contribs) (→Solution 3) |
(Added vector/dot product solution) |
||
Line 9: | Line 9: | ||
\textbf{(E)}\ \frac{4}{7} \qquad</math> | \textbf{(E)}\ \frac{4}{7} \qquad</math> | ||
− | == Solution 1== | + | == Solution 1 (Dot Product) == |
+ | |||
+ | First, find <math>A=(-5,0)</math>, <math>B=(0,-15)</math>, and <math>C=(3,0)</math>. Create vectors <math>\overrightarrow{BA}</math> and <math>\overrightarrow{BC}.</math> These can be reduced to <math>\langle -1, 3 \rangle</math> and <math>\langle 1, 5 \rangle</math>, respectively. Then, we can use the dot product to calculate the cosine of the angle (where <math>\theta=\angle ABC</math>) between them: | ||
+ | |||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \langle -1, 3 \rangle \cdot \langle 1, 5 \rangle = 15-1 &= \sqrt{10}\sqrt{26}\cos(\theta),\ | ||
+ | \implies \cos (\theta) &= \frac{7}{\sqrt{65}}. | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Thus, <cmath>\tan(\angle ABC) = \sqrt{\frac{65}{49}-1}= \boxed{\textbf{(E)}\ \frac{4}{7}}.</cmath> | ||
+ | |||
+ | ~Indiiiigo | ||
+ | |||
+ | == Solution 2== | ||
<math>y=x^2+2x-15</math> intersects the <math>x</math>-axis at points <math>(-5, 0)</math> and <math>(3, 0)</math>. Without loss of generality, let these points be <math>A</math> and <math>C</math> respectively. Also, the graph intersects the y-axis at point <math>B = (0, -15)</math>. | <math>y=x^2+2x-15</math> intersects the <math>x</math>-axis at points <math>(-5, 0)</math> and <math>(3, 0)</math>. Without loss of generality, let these points be <math>A</math> and <math>C</math> respectively. Also, the graph intersects the y-axis at point <math>B = (0, -15)</math>. | ||
Line 21: | Line 36: | ||
Alternatively, we can use the [[Pythagorean Theorem]] to find that <math>AB = 5 \sqrt{10}</math> and <math>BC = 3 \sqrt{26}</math> and then use the <math>A = \frac12 ab \sin \angle C</math> [[Area of a Triangle|area formula for a triangle]] and the [[Law of Cosines]] to find <math>\tan(\angle ABC)</math>. | Alternatively, we can use the [[Pythagorean Theorem]] to find that <math>AB = 5 \sqrt{10}</math> and <math>BC = 3 \sqrt{26}</math> and then use the <math>A = \frac12 ab \sin \angle C</math> [[Area of a Triangle|area formula for a triangle]] and the [[Law of Cosines]] to find <math>\tan(\angle ABC)</math>. | ||
− | ==Solution | + | ==Solution 3== |
Like above, we set <math>A</math> to <math>(-5,0)</math>, <math>B</math> to <math>(0, -15)</math>, and <math>C</math> to <math>(3,0)</math>, then finding via the Pythagorean Theorem that <math>AB = 5 \sqrt{10}</math> and <math>BC = 3 \sqrt{26}</math>. Using the Law of Cosines, we see that <cmath>\cos(\angle ABC) = \frac{AB^2 + BC^2 - AC^2}{2 AB BC} = \frac{250 + 234 - 64}{15 \sqrt{260}} = \frac{7}{\sqrt{65}}.</cmath> Then, we use the identity <math>\tan^2(x) = \sec^2(x) - 1</math> to get <cmath>\tan(\angle ABC) = \sqrt{\frac{65}{49} - 1} = \boxed{\textbf{(E)}\ \frac{4}{7}}.</cmath> | Like above, we set <math>A</math> to <math>(-5,0)</math>, <math>B</math> to <math>(0, -15)</math>, and <math>C</math> to <math>(3,0)</math>, then finding via the Pythagorean Theorem that <math>AB = 5 \sqrt{10}</math> and <math>BC = 3 \sqrt{26}</math>. Using the Law of Cosines, we see that <cmath>\cos(\angle ABC) = \frac{AB^2 + BC^2 - AC^2}{2 AB BC} = \frac{250 + 234 - 64}{15 \sqrt{260}} = \frac{7}{\sqrt{65}}.</cmath> Then, we use the identity <math>\tan^2(x) = \sec^2(x) - 1</math> to get <cmath>\tan(\angle ABC) = \sqrt{\frac{65}{49} - 1} = \boxed{\textbf{(E)}\ \frac{4}{7}}.</cmath> | ||
Line 27: | Line 42: | ||
~ jamesl123456 | ~ jamesl123456 | ||
− | ==Solution | + | ==Solution 4== |
We can reflect the figure, but still have the same angle. This problem is the same as having points <math>D(0,0)</math>, <math>E(3,15)</math>, and <math>F(-5,15)</math>, where we're solving for angle FED. We can use the formula for <math>\tan(a-b)</math> to solve now where <math>a</math> is the <math>x</math>-axis to angle <math>F</math> and <math>b</math> is the <math>x</math>-axis to angle <math>E</math>. <math>\tan(a) = \textrm{slope of line }DF = -3</math> and <math>\tan(B) = \textrm{slope of line }DE = 5</math>. Plugging these values into the <math>\tan(a-b)</math> formula, we get <math>(-3-5)/(1+(-3\cdot 5))</math> which is <math>\boxed{\textbf{(E)}\ \frac{4}{7}}.</math> | We can reflect the figure, but still have the same angle. This problem is the same as having points <math>D(0,0)</math>, <math>E(3,15)</math>, and <math>F(-5,15)</math>, where we're solving for angle FED. We can use the formula for <math>\tan(a-b)</math> to solve now where <math>a</math> is the <math>x</math>-axis to angle <math>F</math> and <math>b</math> is the <math>x</math>-axis to angle <math>E</math>. <math>\tan(a) = \textrm{slope of line }DF = -3</math> and <math>\tan(B) = \textrm{slope of line }DE = 5</math>. Plugging these values into the <math>\tan(a-b)</math> formula, we get <math>(-3-5)/(1+(-3\cdot 5))</math> which is <math>\boxed{\textbf{(E)}\ \frac{4}{7}}.</math> |
Revision as of 21:09, 20 November 2022
Contents
[hide]Problem
The graph of intersects the -axis at points and and the -axis at point . What is ?
Solution 1 (Dot Product)
First, find , , and . Create vectors and These can be reduced to and , respectively. Then, we can use the dot product to calculate the cosine of the angle (where ) between them:
Thus,
~Indiiiigo
Solution 2
intersects the -axis at points and . Without loss of generality, let these points be and respectively. Also, the graph intersects the y-axis at point .
Let point denote the origin . Note that triangles and are right.
We have
Alternatively, we can use the Pythagorean Theorem to find that and and then use the area formula for a triangle and the Law of Cosines to find .
Solution 3
Like above, we set to , to , and to , then finding via the Pythagorean Theorem that and . Using the Law of Cosines, we see that Then, we use the identity to get
~ jamesl123456
Solution 4
We can reflect the figure, but still have the same angle. This problem is the same as having points , , and , where we're solving for angle FED. We can use the formula for to solve now where is the -axis to angle and is the -axis to angle . and . Plugging these values into the formula, we get which is
~mathboy100 (minor LaTeX edits)
See Also
2022 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.