Difference between revisions of "Mock Geometry AIME 2011 Problems/Problem 4"
(Created page with "==Problem== In triangle <math>ABC,</math> <math>AB=6, BC=9, \angle ABC=120^{\circ}</math> Let <math>P</math> and <math>Q</math> be points on <math>AC</math> such that <math>BPQ<...") |
R00tsofunity (talk | contribs) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | In triangle <math>ABC,</math> <math>AB=6, BC=9, \angle ABC=120^{\circ}</math> Let <math>P</math> and <math>Q</math> be points on <math>AC</math> such that <math>BPQ</math> is equilateral. The perimeter of <math>BPQ</math> can be expressed in the form <math>\frac{m} {\sqrt{n}},</math> where <math>m,n</math> are relatively prime positive integers. Find <math>m+n.</math> | + | In triangle <math>ABC,</math> <math>AB=6, BC=9, \angle ABC=120^{\circ}</math>. Let <math>P</math> and <math>Q</math> be points on <math>AC</math> such that <math>BPQ</math> is equilateral. The perimeter of <math>BPQ</math> can be expressed in the form <math>\frac{m} {\sqrt{n}},</math> where <math>m,n</math> are relatively prime positive integers. Find <math>m+n.</math> |
− | ==Solution== | + | ==Solution 1== |
− | |||
+ | <asy> | ||
+ | unitsize(1cm); | ||
+ | draw((0,3sqrt(3))--(3,0)--(12,0)--cycle); | ||
+ | draw((3,0)--(84/19,36sqrt(3)/19)); | ||
+ | draw((3,0)--(48/19, 4.10223)); | ||
+ | draw((3,0)--(120/19,2.46134)); | ||
+ | label("$A$",(0,3sqrt(3)),NNW); | ||
+ | label("$B$",(3,0),SW); | ||
+ | label("$C$",(12,0),ESE); | ||
+ | label("$P$",(48/19,4.10223),NNE); | ||
+ | label("$Q$",(120/19,2.46134),NE); | ||
+ | label("$H$",(84/19,36sqrt(3)/19),NNE); | ||
+ | </asy> | ||
− | + | Let <math>H</math> be the midpoint of <math>PQ</math>. It follows that <math>BH</math> is perpendicular to <math>PQ</math> and to <math>AC</math>. The area of <math>\Delta ABC</math> can then be calculated two different ways: <math>\frac{1}{2}*AB*BC*\sin{B}</math>, and <math>\frac{BH*AC}{2}</math>. | |
− | Let <math>s</math> be the side length of <math>BPQ</math>. The height of an equilateral triangle is given by the formula <math>\frac{s\sqrt3}{2}</math>. Then <math>BH=\frac{s\sqrt{3}}{2}=\frac{ | + | |
+ | By the Law of Cosines, <math>AC^2=9^2+6^2-2*9*6\cos{120}=171</math> and so <math>AC=3\sqrt{19}</math>. Therefore, <math>[ABC]=\frac{1}{2}*6*9\sin{120}=\frac{3\sqrt{19}BH}{2}</math>. Solving for <math>BH</math> yields <math>BH=\frac{9\sqrt{3}}{\sqrt{19}}</math>. | ||
+ | |||
+ | Let <math>s</math> be the side length of <math>BPQ</math>. The height of an equilateral triangle is given by the formula <math>\frac{s\sqrt3}{2}</math>. Then <math>BH=\frac{s\sqrt{3}}{2}=\frac{9\sqrt{3}}{\sqrt{19}}</math>. Solving for <math>s</math> yields <math>s=\frac{18}{\sqrt{19}}</math>. Then the perimeter of the triangle is <math>3s=\frac{54}{\sqrt{19}}</math> and <math>m+n=54+19=\boxed{073}</math>. | ||
+ | |||
+ | ==Solution 2== | ||
+ | Let <math>\angle A = \alpha</math> and <math>BP = PQ = QB = x</math>. By the Law of Cosines, <math>AC = 3\sqrt{19}</math>. It is easy to see that <math>\angle APB = 120^\circ</math>. Since <math>\angle ABC = 120^\circ</math>, by AA similarity<math>\triangle ABC \sim \triangle APB</math>. From this, we have: <cmath>\frac{AB}{PB} = \frac{AC}{BC}</cmath> <cmath>\frac{6}{x}=\frac{3\sqrt{19}}{9}</cmath> Solving, we find that <math>x = \frac{18}{\sqrt{19}}</math>, so the perimeter is <math>3x = \frac{54}{\sqrt{19}}</math>, and our answer is <math>m+n=\boxed{73}</math> | ||
+ | |||
+ | ==Video Solution by Punxsutawney Phil== | ||
+ | https://youtube.com/watch?v=q0lUoXmkAyk |
Latest revision as of 02:38, 25 December 2022
Problem
In triangle . Let and be points on such that is equilateral. The perimeter of can be expressed in the form where are relatively prime positive integers. Find
Solution 1
Let be the midpoint of . It follows that is perpendicular to and to . The area of can then be calculated two different ways: , and .
By the Law of Cosines, and so . Therefore, . Solving for yields .
Let be the side length of . The height of an equilateral triangle is given by the formula . Then . Solving for yields . Then the perimeter of the triangle is and .
Solution 2
Let and . By the Law of Cosines, . It is easy to see that . Since , by AA similarity. From this, we have: Solving, we find that , so the perimeter is , and our answer is