Difference between revisions of "2011 AIME II Problems/Problem 10"
m |
Aaryabhatta1 (talk | contribs) |
||
Line 79: | Line 79: | ||
~bluesoul changes the equation to a right equation, the previous equation isn't solvable | ~bluesoul changes the equation to a right equation, the previous equation isn't solvable | ||
+ | ==Solution 5 (Quick Angle Solution)== | ||
+ | Let <math>M</math> be the midpoint of <math>AB</math> and <math>N</math> of <math>CD</math>. As <math>\angle OMP = \angle ONP</math>, quadrilateral <math>OMPN</math> is cyclic with diameter <math>OP</math>. By Cyclic quadrilaterals note that <math>\angle MPO = \angle MNO</math>. | ||
+ | |||
+ | The area of <math>\triangle MNP</math> can be computed by Herons as <cmath>[MNO] = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{28\cdot 16\cdot 8\cdot 4} = 32\sqrt{14}.</cmath> The area is also <math>\frac{1}{2}ON \cdot MN \sin{\angle MNO}</math>. Therefore, | ||
+ | <cmath>\begin{align*} | ||
+ | \sin{\angle MNO} &= \frac{2[MNO]}{ON \cdot MN} \ | ||
+ | &= \frac{2}{9}\sqrt{14} \ | ||
+ | \sin{\angle MNO} &= \frac{OM}{OP} \ | ||
+ | &= \frac{2}{9}\sqrt{14} \ | ||
+ | OP &= \frac{90\sqrt{14}}{14} \ | ||
+ | OP^2 &= \frac{4050}{7} \implies \boxed{057}. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | ~ Aaryabhatta1 | ||
==See also== | ==See also== | ||
{{AIME box|year=2011|n=II|num-b=9|num-a=11}} | {{AIME box|year=2011|n=II|num-b=9|num-a=11}} |
Revision as of 13:15, 25 December 2022
Contents
[hide]Problem 10
A circle with center has radius 25. Chord of length 30 and chord of length 14 intersect at point . The distance between the midpoints of the two chords is 12. The quantity can be represented as , where and are relatively prime positive integers. Find the remainder when is divided by 1000.
Solution 1
Let and be the midpoints of and , respectively, such that intersects .
Since and are midpoints, and .
and are located on the circumference of the circle, so .
The line through the midpoint of a chord of a circle and the center of that circle is perpendicular to that chord, so and are right triangles (with and being the right angles). By the Pythagorean Theorem, , and .
Let , , and be lengths , , and , respectively. OEP and OFP are also right triangles, so , and
We are given that has length 12, so, using the Law of Cosines with :
Substituting for and , and applying the Cosine of Sum formula:
and are acute angles in right triangles, so substitute opposite/hypotenuse for sines and adjacent/hypotenuse for cosines:
Combine terms and multiply both sides by :
Combine terms again, and divide both sides by 64:
Square both sides:
This reduces to ; .
Solution 2 - Fastest
We begin as in the first solution. Once we see that has side lengths 12,20, and 24, we can compute its area with Heron's formula:
.
So its circumradius is . Looking at , we see that , which makes it a cyclic quadrilateral. This means 's circumcircle and 's inscribed circle are the same.
Since is cyclic with diameter , we have , so and the answer is .
Solution 3
We begin as the first solution have and . Because , Quadrilateral is inscribed in a Circle. Assume point is the center of this circle.
point is on
Link and , Made line , then
On the other hand,
As a result,
Therefore,
As a result,
Solution 4
Let .
Proceed as the first solution in finding that quadrilateral has side lengths , , , and , and diagonals and .
We note that quadrilateral is cyclic and use Ptolemy's theorem to solve for :
Solving, we have so the answer is .
-Solution by blueberrieejam
~bluesoul changes the equation to a right equation, the previous equation isn't solvable
Solution 5 (Quick Angle Solution)
Let be the midpoint of and of . As , quadrilateral is cyclic with diameter . By Cyclic quadrilaterals note that .
The area of can be computed by Herons as The area is also . Therefore,
~ Aaryabhatta1
See also
2011 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.